Upper Silver Creek Restoration Project Year 4 Monitoring Report

Burke County, North Carolina NCDMS Project ID Number – 94645 Catawba River Basin: 03050101-050050 SAW ID: 2010-02157, DWR # 13-0595

Project Info:	Monitoring Year: 4 of 5 Year of Data Collection: 2018 Year of Completed Construction: 2015 Submission Date: December 2018
Submitted To:	NCDEQ – Division of Mitigation Services 5 Ravenscroft Drive, Suite 102 Asheville, NC 28801 NCDEQ Contract ID No. 003270

Upper Silver Creek Restoration Project Year 4 Monitoring Report

Burke County, North Carolina NCDMS Project ID Number – 94645

Report Prepared and Submitted by Michael Baker Engineering, Inc. 797 Haywood Road, Suite 201 Asheville, NC 28806

NC Professional Engineering License # F-1084

Michael Baker

INTERNATIONAL

Innovation Done Right...We Make a Difference

January 2, 2019

NC Division of Mitigation Services (NCDMS) Attn: Mr. Matthew Reid, Western Project Manager 5 Ravenscroft Drive, Suite 102 Asheville, NC 28801

Subject: Response to DMS comments on the Year 4 Monitoring Report Review for the Upper Silver Creek Stream and Wetland Restoration Project; Catawba River Basin - CU# 03050101; Burke County, North Carolina; NCEEP Project # 94645; Contract No. 003270

Dear Mr. Reid,

Please find enclosed the final Upper Silver Creek Year 4 Monitoring Report. I have addressed the comments that you submitted on the draft report. My responses to your comments are the following:

Table 2

• Please add two lines under Year 4 monitoring. One for "Vegetation Monitoring" and another for "Stream Monitoring". Include the dates that data was collected for both additional lines. The IRT has requested this information be provided.

The additional lines and information has been added. This modification was not requested for any of our other reports, so we are unclear as to how broadly we should apply this request.

Cross-sections and Table 11

• Please confirm that the MY4 (2018) BHRs have been calculated based on the attached DMS technical guidance. The Abkf reported in Table 11 does not show the same area being used as the asbuilt data. Please add note on table indicating that beginning in MY4, the bankfull elevation and channel cross section dimensions are calculated using a fixed Abkf as described in the Standard Measurement of the BHR Monitoring Parameter provided by NCIRT and NCDMS (9/2018). Please update table and cross-section graphs as necessary with revised measurements.

The BHRs have been calculated based on our best understanding of the new methodology and additional input from the Raleigh NCDMS staff (Greg Melia and Jeff Schaffer). The A_{bkf} that is reported in Table 11 is the A_{bkf} for MY4 based on the MY0 bankfull elevation used in each report. The BH Ratio reported on each cross-section and in Table 11 is based on the A_{bkf} reported in the MY0 report and requested in the new guidance. This involves adjusting an elevation transect line until the MY0 cross-sectional area is indicated under that line (call this elevation ABKF). The BH Ratio is the ratio of the depth from the low bank of that monitoring year (call this TOB elevation) to that years thalweg and the depth from the ABKF to that years thalweg, BH ratio = (TOB-TW)/(ABKF/TW), where TOB and TW are for the monitoring year

797 Haywood Road | Suite 201 | Asheville NC 28806

and ABKF is based on the MY0 A_{bkf}). All cross-sections and data shown in the tables are based on this methodology and updates have been made as requested.

Profile UT2 and UT3

• The UT2 profile and sections of UT3 indicate significant aggradation. As Baker is aware, the USACE will be looking at defined bed/bank and often denies credit for channels that have become filled with sediment. I am aware of the large upstream sediment sources from past mining activities on UT2. Please add a short discussion in section 2.2.1 regarding this issue. Does Baker have any corrective action or adaptive management planned for these reaches?

We have added more information to the discussion of aggradation in section 2.2.1. We do indicate that we will monitor the areas of aggradation indicated by the cross-sections and general project channels, to be sure that sandy material that has moved into the project reach due to the unusually high flows of this year, is moving through the system. We will specifically evaluate UT2 and areas of UT3 to evaluate ways that we can enhance sediment transport or directly remove accumulated sediment as needed. In some locations this likely will involve removal of vegetation (cattails) or woody debris that is causing aggradation.

General

• Please include responses to comments in front of final report.

Our comments will be added to the final report.

If you have any questions or find any issues that need to be addressed, please contact me directly at (828) 412-6100. I am submitting an invoice for this task to Ms. Debby Davis in the Raleigh DMS Office and will be providing you an email copy.

Sincerely, Michy Clemmons

Micky Clemmons, Project Manager Michael Baker Engineering, Inc.

TABLE OF CONTENTS

1.0	EXECUTIVE SUMMARY	1
2.0	METHODOLOGY	2
2.1	Vegetation Assessment	3
2.2	Stream Assessment 2.2.1 Morphologic Parameters and Channel Stability 2.2.2 Hydrology	3
2 2.3	2.2.3 Photographic Documentation	5
3.0	REFERENCES	6

APPENDICES

Appendix	Α	General	Figu	res and Plan Views
		Figure	1	Project Vicinity Map and Directions
		Figure	2	Current Condition Plan View (CCPV) – Overview Map
				Figure 2A CCPV North half of Project
				Figure 2B CCPV South half of Project
Appendix	В	General	Proje	ect Tables
		Table	1	Project Components and Mitigation Credits
		Figure	3	U. Silver Cr. Project Asset Map
		Table	2	Project Activity and Reporting History
		Table	3	Project Contacts
		Table	4	Project Attributes
Appendix	С	Vegetati	on As	ssessment Data
		Table	5	Vegetation Plot Mitigation Success Summary
		Table	6	Vegetation Metadata
		Table	7	Stem Count Arranged by Plot
		Figure	4	Vegetation Monitoring Plot Photos
Appendix	D	Stream A	Assess	sment Data
		Figure	5	Stream Photos by Channel and Station
		Table	8	Visual Morphological Stability Assessment
		Table	8a	Stream Problem Areas
		Table	9	Verification of Bankfull or Greater than Bankfull Events

- Figure 6 Cross-Sections with Annual Overlays
- Figure 7 Longitudinal Profiles with Annual Overlays
- Figure8Pebble Count Plots with Annual Overlays
- Table10Monitoring Year 4 Stream Summary
- Table11Morphology and Hydraulic Monitoring Summary

Appendix E Wetland Assessment Data

- Figure 9 Observed Rainfall vs. Historical Average
- Figure 10 Wetland Gauge Graphs
- Table12Wetland Gauge Attainment Data
- Table12aWetland Restoration Area Well Success
- Figure 11 Wetland Photo Log

1.0 EXECUTIVE SUMMARY

Michael Baker Engineering, Inc. (Baker) restored or enhanced 5,186 linear feet (LF) of perennial stream channel along Silver Creek and three unnamed tributaries (UT1, UT2, and UT3); and additionally restored, enhanced or created approximately 9.14 acres of wetlands that had been previously disturbed in Burke County, NC, (Appendix A). The Upper Silver Creek Stream and Wetland Restoration Project (Site) is located southeast of Morganton, NC, approximately 11 miles southeast of the intersection of Highway 64 and Goldmine Road. The Site is located in the NC Division of Water Resources (NCDWR) sub-basin 03-08-31 and the NCDEQ Division of Mitigation Services (NCDMS) Targeted Local Watershed (TLW) 03050101-050050 of the Catawba River Basin. The project involved the restoration and enhancement of a Piedmont/Mountain Mixed Bottomland Hardwood Forest system (Schafale and Weakley 1990) from impairments within the project area due to past agricultural conversion, cattle grazing, gold mining and draining of floodplain wetlands by ditching activities.

The project goals directly addressed stressors identified in the Catawba River Basin Restoration Priority (RBRP) Plan such as degraded riparian conditions, channel modification, and excess sediment and nutrient inputs. The primary restoration goals, as outlined in the approved mitigation plan, are described below:

- Create geomorphically stable stream channels within the Upper Silver Creek project area including headwater tributaries in the Catawba River basin;
- Restore, enhance, and expand wetland functions across the Site;
- Improve and restore hydrologic connections between streams and degraded riparian wetland areas and overall ecosystem functionality;
- Improve water quality within the Upper Silver Creek project area through reduction of bank erosion, improved nutrient and sediment removal, and stabilization of streambanks; and
- Improve aquatic and terrestrial habitat.

To accomplish these goals, the following actions are recommended:

- Restore the existing incised, eroding, and channelized stream by creating a stable channel that has access to its floodplain;
- Improve water quality by establishing buffers for nutrient removal from runoff and by stabilizing stream banks to reduce bank erosion;
- Improve in-stream habitat by providing a more diverse bedform with riffles and pools, creating deeper pools, developing areas that increase oxygenation, providing woody debris for habitat, and reducing bank erosion; and
- Improve terrestrial habitat by planting riparian areas with native vegetation and protecting these areas with a permanent conservation easement. The riparian area will increase storm water runoff filtering capacity, improve bank stability, provide shading to decrease water temperature and improve habitat.

During 2018 there were at least four high flow events that inundated the floodplain, depositing woody debris and other flotsam in wrack lines well away from the top of bank. These events were documented on 4/2/2018, 5/8/2018, 10/3/2018, and 10/18/2018 and do not appear to have negatively impacted constructed banks or structures.

Year 4 (MY4) monitoring indicated that the planted acreage was functioning well with no bank, bench or floodplain areas having bare areas of a significant size. Invasive Chinese privet and multiflora rose were treated in MY3. No significant growth of these invasives was noted in 2018 and no invasive treatments were conducted in MY4. The invasive vegetation within this area will continue to be treated with herbicide to control new growth. Fourteen (14) vegetation plots have been established at this site for monitoring. The average density of total planted stems following the MY4 growing season is 702 stems per acre with an additional average of 43 volunteer stems per acre. Based on the average density of 702 planted stems per acre, the Site is on track to meet the established success criteria.

Stream geomorphological stability and performance during MY4 was assessed by surveying sixteen crosssections, a profile of each channel, evaluating the bed particle size with five riffle pebble counts and by replicating channel location photographs. Channel cross-sections and profiles were similar to what was observed in the past with no major instability identified and the general morphology is responding as designed and meeting project goals. Some of the cross-sections indicated slight aggradation in areas, but none of these areas indicated a significant or systemic problem.

Stream pebble data indicated that the shift to smaller particles on all project reaches that was noted in MY3 had stabilized and the sediment is currently coarser overall and similar to what was seen in previous years. Pebble counts on UT2 and UT3 in MY3 indicated that fine sediment had accumulated in the channels. The pebble counts on these two reaches in MY4 indicate that this fine sediment has moved through the stream channel and substrate size has increased significantly. This suggests that this aggradation was temporary and not an ongoing trend for these tributaries. Overall, MY4 data indicate a properly functioning system, as there were no mid-channel bars or other sediment transport issues.

Wetland monitoring during MY4 demonstrated that all thirteen groundwater monitoring wells located on the Site met the wetland success criteria as stated in the Site Mitigation Plan. The gauges demonstrated consecutive hydroperiods of 12 percent or greater, ranging from 16.3 to 100 percent of the growing season. It was noted during 2018 monitoring that several of the rebar posts that were installed at each well to indicate the ground elevation were protruding from the soil up to 0.1 feet in some cases. This could have been due to either the soil settling around the post or upward swelling in freeze/thaw cycles since construction. The elevation of these rebar posts was adjusted to better reflect the actual ground level, and the calculation in the wetland data sheets was updated accordingly. In addition, it was noted that USAW4 and USAW6 were installed in fill material that did not reflect the wetland conditions of the surrounding area. These two wells were relocated slightly (<10 feet) to more accurately gauge water levels in the surrounding restored wetland areas. The onsite rain gauge that was installed at the Site in 2017 is functioning and providing accurate rainfall data that is shown in the well data sheets.

Summary information/data related to the Site and statistics related to performance of various project and monitoring elements can be found in the tables and figures in the report Appendices. Narrative background and supporting information formerly found in these reports can be found in the Baseline Monitoring Report and in the Mitigation Plan available on the NCDMS website. All raw data supporting the tables and figures in the appendices are available from NCDMS upon request.

2.0 METHODOLOGY

The monitoring plan for the Site includes criteria to evaluate the success of the stream, wetland and vegetation components of the project. The methodology and report template used to evaluate these components adheres to the NCDMS monitoring guidance document dated December 1, 2009 and other mitigation guidance (NCEEP 2009 and USACE 2003), which will continue to serve as the template for subsequent monitoring years. The specific locations of monitoring features: vegetation plots, permanent cross-sections, monitoring wells, flow gauges, and the crest gauge, are shown on the CCPV sheets found in Appendix A.

The Year 4 monitoring data and site photographs were collected in October 2018.

2.1 Vegetation Assessment

To determine if vegetation success criteria are achieved, vegetation monitoring quadrants (veg plots) were installed and monitored across the Site in accordance with the CVS-NCDMS Protocol for Recording Vegetation, Version 4.1 (CVS 2007 and Lee, Peet, Roberts and Wentworth 2007). The vegetation monitoring plots are a minimum of two percent of the planted portion of the Site with 14 plots established randomly within the planted riparian buffer and wetland area, per CVS Monitoring Level 2. No veg plots were established within the undisturbed wooded areas along the right bank of Silver Creek. The size of individual quadrants is 100 square meters for woody (tree) species and 1 square meter for herbaceous vegetation. Herbaceous quadrants were established in one corner of the larger woody plots and are monitored by comparing photographs taken year to year.

Year 4 monitoring found that all vegetation was in good condition. All vegetation monitoring quadrants indicated that most planted trees were growing and in good condition. The average density of planted stems following the Year 4 growing season was 702 stems per acre. There was also an average of 43 volunteer stems per acre, composed of six different tree species. The total average density of both planted and volunteer stems was 746 stems per acre. With an average density of 702 planted stems per acre, the Site is on track to meet the final success criteria of 260 stems per acre by the end of Year 5.

The areas of invasive Chinese privet (*Ligustrum sinense*) and multiflora rose (*Rosa multiflora*) vegetation that were treated in MY3 did not exhibit significant regrowth during MY4. These areas will be monitored, and any regrowth will be treated in MY5.

No other areas of concern regarding vegetation were observed along Silver Creek or the tributaries. Year 4 vegetation assessment information is provided in Appendix C.

2.2 Stream Assessment

The Upper Silver Creek Site approach was restoration of a stable morphology that allows for the transport of water and sediment through the Site and allows stream flows larger than bankfull flows to spread onto the floodplain. Stream monitoring efforts focus on visual observations, a crest gauge to document bankfull flooding events, surveying established stream cross-sections and channel profiles to assess channel stability and pebble counts to assess if proper sediment transport is taking place.

Stream survey data was collected to a minimum of Class C Vertical and Class A Horizontal Accuracy using Leica TS06 Total Station and was georeferenced to the NAD83 State Plane Coordinate System, FIPS3200 in US Survey Feet, which was derived from the As-built Survey.

2.2.1 Morphologic Parameters and Channel Stability

Cross-sections were classified using the Rosgen Stream Classification System (Rosgen 1994) and all cross-sections were evaluated to determine if they meet design expectations. Cross-sections were also compared to the baseline cross-section plots to evaluate change between construction and the MY4 survey. Morphological survey data is presented in Appendix D.

A longitudinal profile was surveyed for the entire length of each channel to document changes from the as-built baseline conditions during the first year of monitoring. The survey was tied to a permanent benchmark and measurements included thalweg, water surface, and top of low bank. Each of these measurements was taken at the head of each feature (e.g., riffle, pool) and at the maximum pool depth.

Stream geomorphological stability and performance during MY4 was assessed by surveying sixteen (16) cross-sections (7 on Silver Creek, 2 on UT1, 2 on UT2 and 5 on UT3) and a profile of these channels as described above. The bed particle size was evaluated with five riffle pebble counts (2 on Silver Creek and 1 on each of the tributaries) and by observation and replicating channel location photographs. Cross-sections of all the channels were very similar to past years, although a few indicated slight aggradation since construction (XS6 pool, XS9 pool, XS11 pool, XS12, XS14 pool, and XS15 pool). All but one of the cross-sections indicated as having aggraded material is a pool where aggradation is expected. The material that is accumulating in each location is sand that is moving through the system from upstream and likely does not indicate a long-term concern. Sandy material has been present in each reach since construction but moves through the system over time. This year has brought the highest rainfall on record in many areas of Western North Carolina and almost constant high flows have moved this sandy material into the project streams. We believe that this material will continue to move through the system and will not cause longterm problems; however, we will continue to monitor the areas of aggradation and will take corrective action if needed. In late winter and early spring of 2019, channels will be inspected and where natural sediment transport processes are being interrupted by vegetation or woody debris, these obstructions will be removed. Sediment may also be removed where possible if needed. In general, all four reaches are maintaining bedform diversity and transporting sediment as intended. There was also little change from past profile surveys and profiles of each channel do not indicate any instability issues.

The Visual Morphological Stability Assessment indicates that the Site is stable and no new channel problem areas (CPAs) were identified in MY4. The two instances of piping that were noted in the MY3 report are still piping in MY4 but are still serving their intended function of redirecting the thalweg away from the outer bank of the stream. These structures are called out in the CCPV as CPA-1 and CPA-2. The one instance of bank erosion that was noted in MY3 (CPA-3) is still eroding and will be monitored in MY5 for any further degradation or stabilization. The locations, descriptions, and photos of these areas are included in the Stream Problem Areas Table in Appendix D and in the MY4 data electronic file. These sites will be monitored in the coming year and repaired if necessary. Overall, channel morphology is responding as designed and meeting project goals.

Pebble count data for MY4 indicates that the shift to smaller particles on Silver Creek mainstem has stabilized at sizes similar to what was seen in previous years. In MY3, pebble counts on UT2 and UT3 indicated that fine sediment had accumulated in the channels. In MY4, there was still fine sediment present in the channels, but it did not dominate as much of the channel as it did in MY3. Pebble counts from UT2 and UT3 indicate that, while there is still sand and fine sediment present in the channel, the substrate coarsened overall in MY4. This is likely a natural process for these channels, both of which have sources of sandy material upstream of the project area. Both channels are transporting this fine material effectively over time as intended. These reaches will continue to be monitored to determine if this trend continues over time. Overall, the pebble data indicate a properly functioning system, as there were no mid-channel bars or other sediment transport issues.

Two beaver dams were removed from the site during MY3. These dams were not rebuilt during MY4 and there were no beaver dams found on the site in 2018.

2.2.2 Hydrology

Two crest gauges were installed on the floodplain at this site, at the bankfull elevation. One is located along the left top of bank on Silver Creek, at approximately Station 19+00, and the second is on the left top of bank of UT3, at approximately Station 9+50. The crest gauge on Silver Creek recorded four bankfull events of 1.19 feet (documented on 4/2/2018), 1.08 feet (documented on 5/8/2018), 0.88 feet (documented on 10/3/2018), and 1.64 feet (documented on 10/18/2018). The highest rainfall events recorded by the on-site rain gauge that likely resulted in these bankfull flows

occurred on 2/11/2018 (2.07 inches), 4/15/2018 (3.3 inches), 9/16/2018 (5.39 inches), and 10/11/2018 (3.24 inches). The site has now recorded six total bankfull events since construction and has met the success criteria. Physical indicators of bankfull flows, such as wrack lines and debris on the bank, were also observed throughout the reach but it is difficult to determine which bankfull event was responsible. Crest gauge readings are presented in Appendix D.

2.2.3 Photographic Documentation

Reference transects were photographed at each permanent cross-section. The survey tape was centered in the photograph of the bank. Photographs were also taken at specific photo points established along each channel during baseline reporting. Photographs from these points will be replicated each year and used to document changes along the channel. Points were selected to include grade control structures as well as other structural components installed during construction. Annual photographs from the established photo points are shown in Appendix D and do not indicate any stability issues at the site and no failing structures with the exception of minor piping at two structures as previously noted.

2.3 Wetland Assessment

Thirteen automated groundwater-monitoring stations were installed in the wetland restoration area to document the hydrologic conditions during the monitoring period. The installations followed USACE protocols (USACE 1997). Groundwater data collected during Year 4 monitoring are located in Appendix E.

To meet the hydrologic success criteria, the monitoring gauge data must show that, for each normal rainfall year within the monitoring period, the Site has been inundated or saturated for a certain hydroperiod. Criteria have been met when the wetland is saturated within 12 inches of the soil surface for 12 percent of the growing season when rainfall amounts approximate normal conditions. Alternatively, when dry conditions prevail, fourteen (14) or more consecutive days during the growing season when antecedent precipitation has been drier than normal for a minimum frequency of 5 years in 10 to 50 percent of the monitoring period becomes the success criteria (USACE, 1987 and 2005).

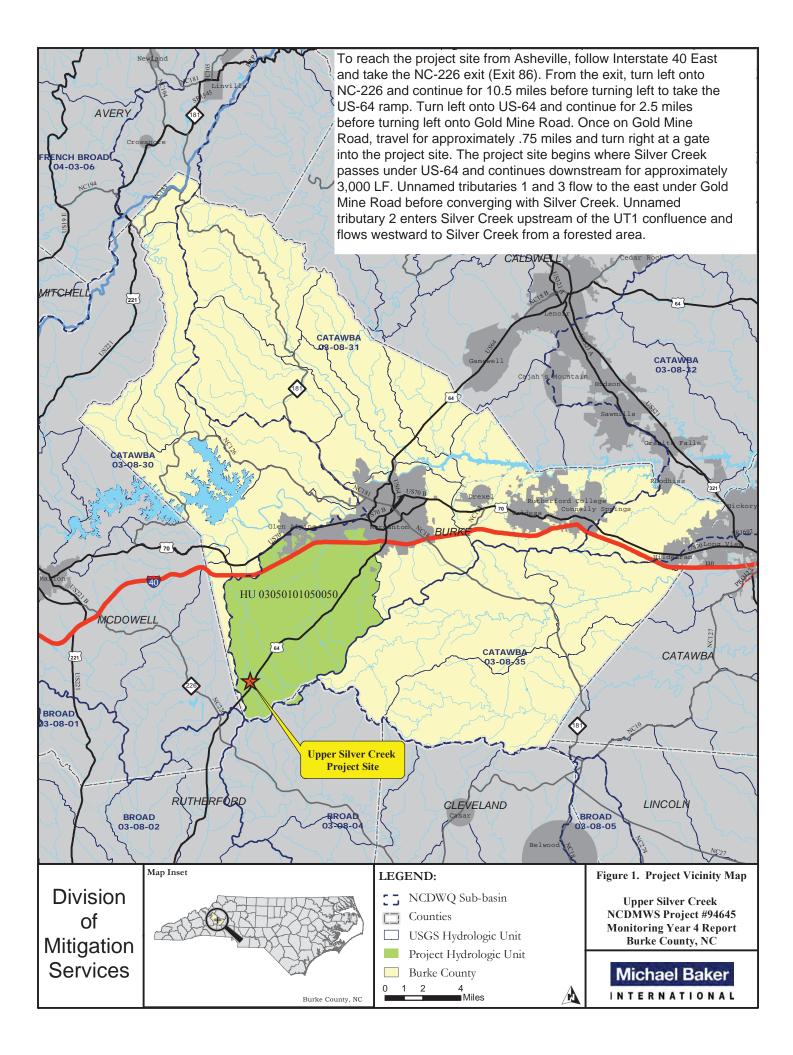
Visual monitoring of wetland areas will be conducted annually. Photographs will be used to visually document system performance and identify areas of low stem density, invasive species vegetation, beaver activity, or other areas of concern. Reference stations will be photographed each year for a minimum of five years following construction. Photographs will be taken from a height of approximately five to six feet. Permanent well markers were established and used to ensure that the same locations (and view directions) on the Site are documented in each monitoring period.

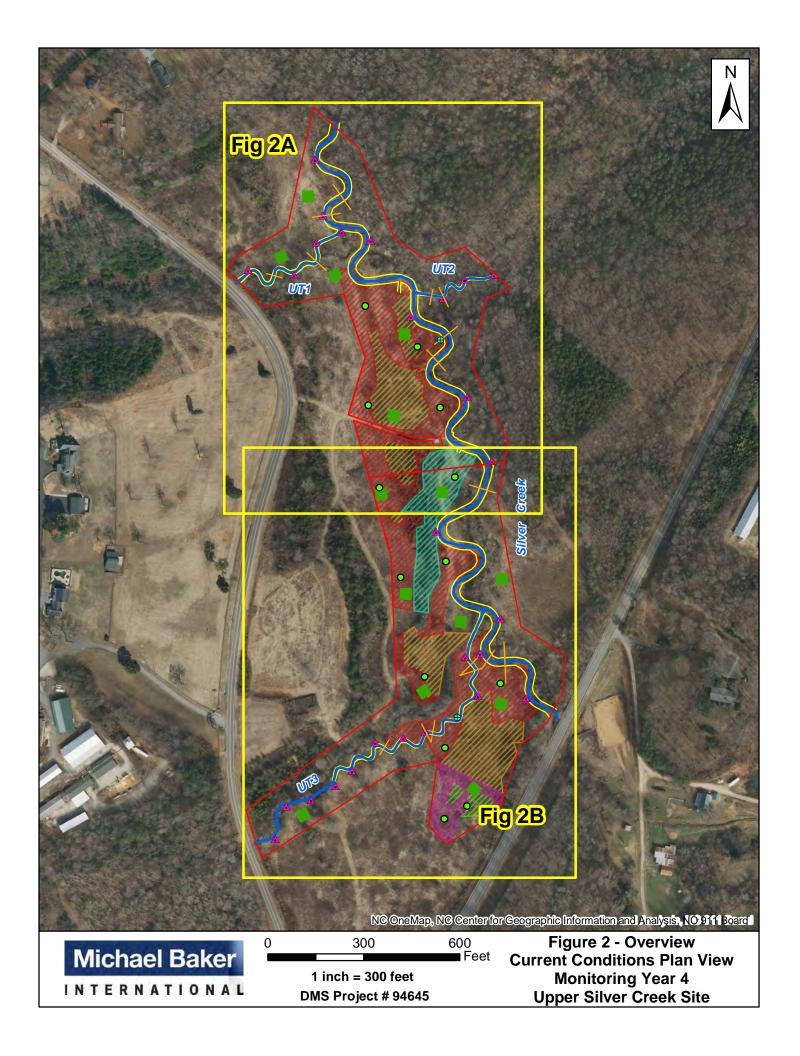
Wetland monitoring during MY4 demonstrated that all thirteen groundwater monitoring wells located on the Site met the wetland success criteria as stated in the Site Mitigation Plan. This is an improvement since MY3, in which 4 wells did not meet the success criteria. All gauges demonstrated consecutive hydroperiods of 12 percent or greater, ranging from 16.3 to 100 percent of the growing season. Two wells, USAW4 and USAW6, were relocated slightly (<10 feet) because it was determined that they had originally been installed in fill material after construction. This material drained much faster than the surrounding soil, which has a consistent hydric layer around 0.8 feet, and resulted in inaccurate pressure gauge readings that were not representative of the surrounding restored wetland. The rain data for the region (Figure 9) shows that rainfall was above the monthly average for much of the year, especially during the early part of the growing season. Baker will continue to monitor the groundwater hydrology of the Site during Monitoring Year 5.

An on-site recording rain gauge was installed at the site in August 2017. Data from this gauge will be used to measure local precipitation in the future to eliminate reliance on the nearby CRONOS stations. These stations often show a high level of variance across a small geographic area, which makes it difficult to determine the actual amount of rain the site receives. Having direct access to this data will allow accurate precipitation data to be collected and presented in future monitoring years.

3.0 REFERENCES

- Carolina Vegetation Survey (CVS) and NC Ecosystem Enhancement Program (NCEEP). 2007. CVS-NCEEP Data Entry Tool v. 2.3.1. University of North Carolina, Raleigh, NC.
- Lee, M., Peet R., Roberts, S., Wentworth, T. 2007. CVS-NCEEP Protocol for Recording Vegetation, Version 4.1.
- North Carolina Ecosystem Enhancement Program (NCEEP). 2009. Guidance and Content Requirements for EEP Monitoring Reports Version 1.2.1. December 1, 2009.
- North Carolina Ecosystem Enhancement Program (NCEEP). 2009. Upper Catawba River Basin Restoration Priorities 2009.
- Rosgen, D. L. 1994. A Classification of Natural Rivers. Catena 22:169-199.
- Schafale, M. P., and A. S. Weakley. 1990. Classification of the natural communities of North Carolina, third approximation. North Carolina Natural Heritage Program. Division of Parks and Recreation, NCDENR. Raleigh, NC.
- United States Army Corps of Engineers (USACE). 1987. Corps of Engineers Wetlands Delineation Manual. Technical Report Y-87-1. Environmental Laboratory. US Army Engineer Waterways Experiment Station. Vicksburg, MS.
- _____. 1997. Corps of Engineers Wetlands Research Program. Technical Note VN-rs-4.1. Environmental Laboratory. U.S. Army Engineer Waterways Experiment Station. Vicksburg, MS.
- _____. 2003. Stream Mitigation Guidelines, April 2003, U.S. Army Corps of Engineers. Wilmington District.
- _____. 2005. "Technical Standard for Water-Table Monitoring of Potential Wetland Sites," WRAP Technical Notes Collection (ERDC TN-WRAP-05-2), U.S. Army Engineer Research and Development Center. Vicksburg, MS.


Appendix A


General Figures and Plan Views

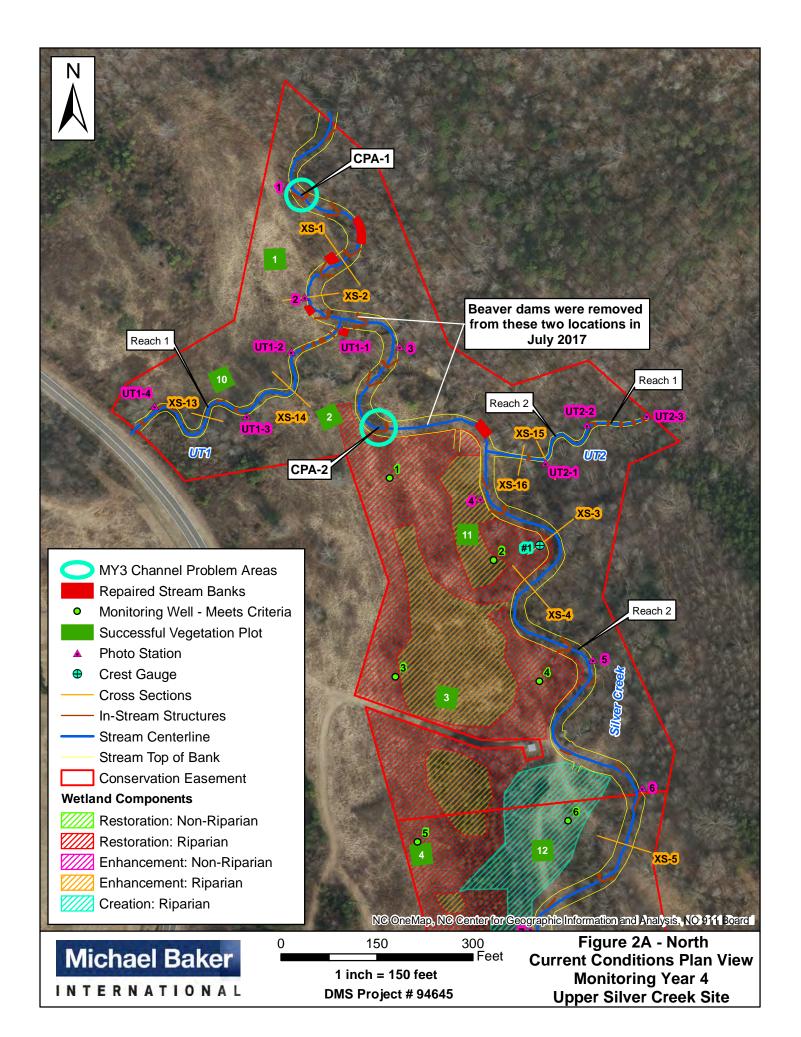
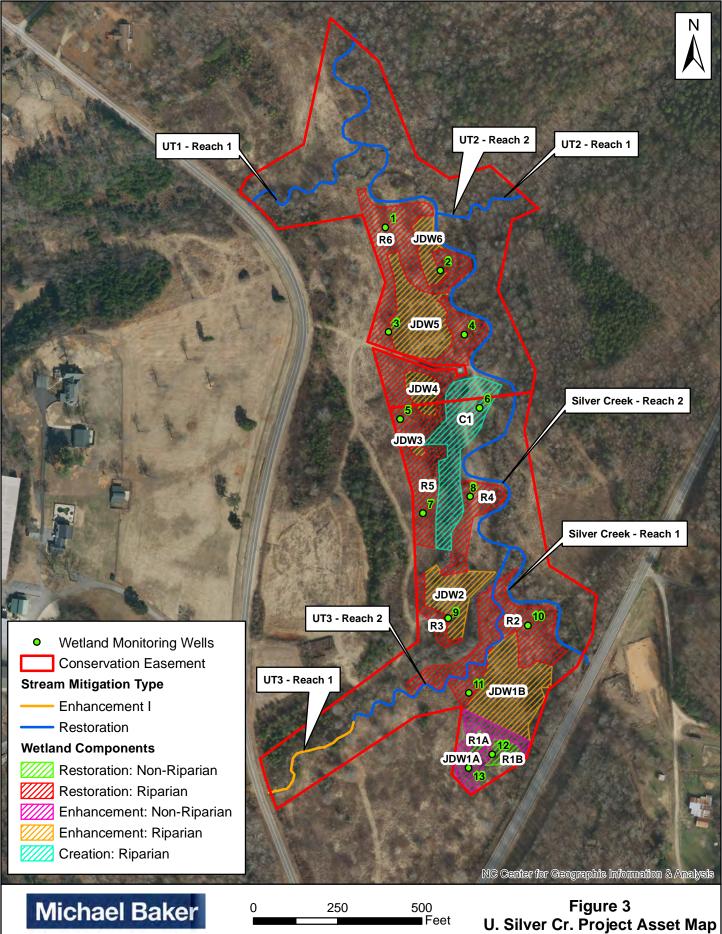

Includes:

Figure 1.	Project Vicinity Map and Directions
Figure 2.	Current Condition Plan View (CCPV)
	– Overview Map
Figure 2A.	CCPV North half of Project

Figure 2B. CCPV South half of Project


Appendix B General Project Tables

Includes:

Table 1. Project Components and Mitigation Credits
Figure 3. U. Silver Cr. Project Asset Map
Table 2. Project Activity and Reporting History
Table 3. Project Contacts
Table 4. Project Attributes

Jpper Si	lver Creek R	estoration P	roject: DM	8 Project II) No. 94645	Miticat	on Credite						
	1					Mitigat	on Credits						
	Stro	eam	Ri	parian Wetl	and	Non	riparian W	etland	Buffer	Nitrogen Nutrient Offset	Phosphorus Nutrient Offset		
Туре	R	EII	R	Е	С	R	Е	С					
Totals	4,843 SMU	137 SMU	4.67 WMU	1.43 WMU	0.33 WMU								
					-	Project (Components						
•	Component Reach ID	Stati	oning/ Loca	ation	Existing I Acre	-	Аррі	roach	Restoration/ Restoration Equivalent	Restoration Footage or Acreage	Mitigation Ration		
TREAM	//S												
Silver Cr					2643	B LF							
	Reach 1		+32 to 8+7				Restora	tion - PII	838 SMU	838 LF	1:1		
	Reach 2	8	+70 to 30+4	48			Restora	ation - PI	2,178 SMU	2178 LF	1:1		
JT1					478	LF							
	Reach 1	0	+07 to 5+0	2	407		Restora	ation - PI	495 SMU	495 LF	1:1		
JT2	Reach 1		+00 to 1+0	3	187	LF	Postora	ation - PI	103 SMU	103 LF	1.1		
	Reach 1 Reach 2		+00 to $1+0+03 to 3+1$					ation - PI ation - PI	207 SMU	103 LF 207 LF	<u>1:1</u> 1:1		
JT3	Reach 2	I		0	1,162	21F	11631016		207 31010	207 LI	1.1		
,10	Reach 1	0	+00 to 3+4	3	1,10/		Enhand	cement I	137 SMU	343 LF	2.5:1		
	Reach 2		-43 to 13+6					ation - PI	1,022 SMU	1,022 LF	1:1		
					-								
VETLAN		Se	e plan shee	ets									
	JDW1a (NR) JDW1b (Ri)				0.42		Enhand		0.21 WMU	0.42 AC	2:1		
	JDW1b (Ri) JDW2 (Ri)				1.01		Enhand		0.51 WMU	1.01 AC	2:1		
	V2 (RI) V3 (Ri)				0.51 0.03			cement	0.25 WMU 0.02 WMU	0.51 AC 0.03 AC	<u>2:1</u> 2:1		
	V4 (Ri)				0.03			cement	0.12 WMU	0.03 AC	2:1		
	V5 (Ri)				0.81			cement	0.40 WMU	0.81 AC	2:1		
	V6 (Ri)				0.25	AC	Enhand	cement	0.13 WMU	0.25 AC	2:1		
	A (NR)				0		Resto		0.06 WMU	0.06 AC	1:1		
	B (NR)				0		Resto		0.15 WMU	0.15 AC	1:1		
	2 (Ri)				0		Resto		1.22 WMU	1.22 AC	1:1		
	3 (Ri)				0		Resto		0.18 WMU	0.18 AC	1:1		
	4 (Ri) 5 (Ri)				0		Resto Resto		0.44 WMU 1.29 WMU	0.44 AC 1.29 AC	<u>1:1</u> 1:1		
	6 (Ri)				0		Resto		1.54 WMU	1.54 AC	1:1		
	1 (Ri)				0			ation	0.33 WMU	0.99 AC	3:1		
	· •					Componer	t Summatio						
			-			•							
R	Restoration L	evel	Strea	m (LF)		an Wetlan		Non-ripa	rian Wetland (AC)	Buffer (SF)	Upland (AC)		
	Restoration		1	843	Riverine 4.67	INON-I	Riverine		0.21				
	Enhancemen		4,		2.85				0.21				
	Enhancemen		3	43	2.00				~··-				
	Creation				0.99								
	Preservation												
High	Quality Prese	ervation											
lore + (Logation	Durmons /E	nation			Elements						
Element		Location	Purpose/Fu	ncuon		Notes							
MP Elei	ments: BR= I	Bioretention	Cell; SF= Sa	and Filter; S	W= Stormwa	ter Wetland	l; WDP= We	et Detention	Pond; DDP= Dry Det	tention			
init Elei			~		1 377 37	ral Infiltrat							

MICHAEL BAKER ENGINEERING, INC. YEAR 4 MONITORING REPORT UPPER SILVER CREEK RESTORATION PROJECT DMS PROJECT 94645

INTERNATIONAL

DMS Project # 94645

Upper Silver Creek Site

Table 2. Project Activity and Reporting History			
Upper Silver Creek Restoration Project: DMS Project ID N	No. 94645		
Activity or Report	Scheduled Completion	Data Collection Complete	Actual Completion or Delivery
Mitigation Plan Prepared	Jan-13	N/A	Jan-13
Mitigation Plan Amended	Sep-13	N/A	Sep-13
Mitigation Plan Approved	Oct-13	N/A	Oct-13
Final Design – (at least 90% complete)	N/A	N/A	May-14
Construction Begins	N/A	N/A	May-14
Temporary S&E mix applied to entire project area	N/A	N/A	Dec-14
Permanent seed mix applied to entire project area	N/A	N/A	Dec-14
Planting of live stakes	Winter 2015	N/A	Feb-15
Planting of bare root trees	N/A	N/A	Feb-15
End of Construction	N/A	N/A	Dec-14
Survey of As-built conditions (Year 0 Monitoring-baseline)	N/A	Mar-15	Jul-15
Repair of 3 piping structures	N/A	N/A	Aug-15
Mitigation Plan Addendum	N/A	N/A	Dec-15
Year 1 Monitoring	Dec-15	Dec-15	Apr-16
Repair of channel problem areas resulting from flooding	N/A	N/A	Mar-16
Year 2 Monitoring	Dec-16	Nov-16	Dec-16
Invasive vegetation treatment	N/A	N/A	Jun-17
Beaver dam removal	N/A	N/A	Jul-17
Year 3 Monitoring	Dec-17	Oct-17	Dec-17
Year 4 Monitoring	Dec-18	Nov-18	Dec-18
Vegetation Monitoring		Oct-18	
Stream Monitoring		Nov-18	
Year 5 Monitoring	Dec-19	N/A	N/A
Vegetation Monitoring			
Stream Monitoring			

Table 3. Project Contacts	
Upper Silver Creek Restoration Project: D	MS Project ID No. 94645
Designer	
Michael Baker Engineering, Inc.	797 Haywood Rd Suite 201
Michael Bakel Engineering, inc.	Asheville, NC 28806
	Contact:
	Micky Clemmons, Tel. 828-412-6100
Construction Contractor	
River Works, Inc.	6105 Chapel Hill Road
River works, me.	Raleigh, NC 27607
	<u>Contact:</u>
	Phillip Todd, Tel. 919-582-3575
Planting Contractor	
River Works, Inc.	6105 Chapel Hill Road
River works, me.	Raleigh, NC 27607
	Contact:
	Phillip Todd, Tel. 919-582-3575
Seeding Contractor	
River Works, Inc.	6105 Chapel Hill Road
	Raleigh, NC 27607
	Contact:
	Phillip Todd, Tel. 919-582-3575
Seed Mix Sources	Green Resources (seed), Tel. 336-855-6363
Nursery Stock Suppliers	Mellow Marsh Farm (trees), 919-742-1200
	ArborGen Inc. (trees), 843-528-3204
	Dykes and Son (trees), 931-668-8833
Monitoring Performers	
Michael Baker Engineering, Inc.	797 Haywood Rd Suite 201 Asheville, NC 28806
Stream Monitoring Point of Contact	<u>Contact:</u> Micky Clemmons, Tel. 828-412-6100
Vegetation Monitoring Point of Contact	Micky Clemmons, Tel. 828-412-6100
Wetland Monitoring Point of Contact	Micky Clemmons, Tel. 828-412-6100

MICHAEL BAKER ENGINEERING, INC. YEAR 4 MONITORING REPORT UPPER SILVER CREEK RESTORATION PROJECT DMS PROJECT NO. 94645

Table 4. Project Attributes			
Upper Silver Creek Restoration Project: D			
	Project Inform		
Project Name	Upper Silver Creek Mitigation Pro	ject	
County	Burke		
Project Area (acres)	22.0		
Project Coordinates (latitude and longitude)	35.6078 N, -81.81742 W		
	Watershed Summary	Information	
Physiographic Province	Blue Ridge (borders Piedmont)		
River Basin	Catawba		
USGS Hydrologic Unit 8-digit and 14-digit	03050101 / 03050101050050		
DWR Sub-basin	03-08-31		
Project Drainage Area (AC)	Mainstem 2.7 - 3.3, UT1 0.28, UT2	0.05, UT3 0.17	
Project Drainage Area Percentage of	<2%		
Impervious Area			
	Deciduous Forest (64		Voody Wetlands (1%)
USGA Land Use Classification	Evergreen Forest (39		eloped, Open Space (5%)
obor Luna ose classification	Shrub/Scrub (5%)		Pasture/Hay (14%)
	Grassland/Herbaceous		
NCDMS Land Use Classification for Silver	Forest (59%)		
Creek Watershed	Agriculture (23%)		
	Impervious Cover (2.9%)		
	Stream Reach Summar	y Information	
Parameters	Mainstem - Reach 1	Mainstem - Reach 2	
Length of Reach (LF)	838	2,178]
Valley Classification (Rosgen)	VIII	VIII	
Drainage Area (AC)	1,746	2,147	
NCDWR Stream Identification Score	49.5	49.5	
NCDWR Water Quality Classification	С	С	
	Е	Е	
Morphological Description (Rosgen stream	Incised channel, little connection to	Incised channel, little connection	
type)	floodplain	to floodplain	
Evolutionary Trend	$E \rightarrow G, E \rightarrow C/F$	$E \rightarrow G, E \rightarrow C/F$	1
Underlying Mapped Soils	AaA, FnA, UnB	AaA, FnA, UnB	1
Drainage Class	Somewhat poorly to well drained	Somewhat poorly to well drained	
Soil Hydric Status	Site-specific	Site-specific	4
Average Channel Slope (ft/ft)	0.004	0.004	4
FEMA Classification	Zone AE	Zone AE	-
	Piedmont/Mtn. Mixed Bottomland	Piedmont/Mtn. Mixed Bottomland	-
Native Vegetation Community	Hardwoods	Hardwoods	
Percent Composition of Exotic/Invasive			1
Vegetation	10%	5%	
Parameters	UT1 - Reach 1	UT2 - Reach 1	UT2 - Reach 2
Length of Reach (LF)	495	103	207
Valley Classification (Rosgen)	III	III	III
Drainage Area (AC)	177	32	32
NCDWR Stream Identification Score	47.5	45	45
NCDWR Water Quality Classification	С	С	С
Morphological Description (Rosgen stream	Gc	channelized B	channelized B
type)	Incised channel, little connection to	channelized/ditched channel	channelized/ditched channel
	floodplain	D.E.C	
Evolutionary Trend	$Gc \rightarrow F$	$\begin{array}{c} B \rightarrow F \rightarrow C \\ UnB \end{array}$	$B \rightarrow F \rightarrow C$
Underlying Mapped Soils	AaA, FnA	UNB	UnB, FnA
Drainage Class	Somewhat poorly to well drained	Somewhat poorly to well drained	Somewhat poorly to well drained
Soil Hydric Status	Site-specific	Site-specific	Site-specific
Average Channel Slope (ft/ft)	0.016	0.037	0.037
FEMA Classification	N/A	N/A	N/A
Native Vegetation Community	Piedmont Dry-Mesic Oak and Hardwoods to Mixed Bottomland Hardwoods	Piedmont/Mtn. Mixed Bottomland Hardwoods	Piedmont/Mtn. Mixed Bottomland Hardwoods
Percent Composition of Exotic/Invasive Vegetation	5%	2%	2%

MICHAEL BAKER ENGINEERING, INC. YEAR 4 MONITORING REPORT UPPER SILVER CREEK RESTORATION PROJECT DMS PROJECT NO. 94645

Parameters	UT3 - I	Reach 1	UT3 -]	Reach 2				
Length of Reach (LF)	34	12	1,0)06				
Valley Classification (Rosgen)	Ι	Π	I	II				
Drainage Area (AC)	12	23	12	23				
NCDWR Stream Identification Score	49.	.75	49	.75				
NCDWR Water Quality Classification	(2	(C				
Momphala sized Description (Basson stream	B	/E		E	1			
Morphological Description (Rosgen stream	Aggrading at upp	er end then stable	Incised channel,	little connection				
type)	to incising a	at lower end	to floo	odplain				
Evolutionary Trend	B/E	→G	E-	→G				
Underlying Mapped Soils	Aa	aA	AaA	, FnA				
Drainage Class	Somewhat poorl	y to well drained	Somewhat poorl	y to well drained				
Soil Hydric Status	Site-sp	pecific	Site-s	pecific				
Average Channel Slope (ft/ft)	0.0)15]			
FEMA Classification	N			/A]			
Native Vegetation Community	Piedmont Dry- Hardy			Iixed Bottomland woods				
Percent Composition of Exotic/Invasive Vegetation	20	2⁄0	2	%				
	Wet	land Summary I	nformation					
Parameters	JDW1	JDW2	JDW3	JDW4	JDW5	JDW6		
Size of Wetland (AC)	1.43	0.51	0.03	0.24	0.81	0.3		
Wetland Type	Riparian	Riparian	Riparian	Riparian	Riparian	Riparian		
Mapped Soil Series	FnA	FnA	FnA	FnA	FnA	FnA		
11	0 1 1 1	Somewhat	Somewhat	Somewhat	Somewhat	Somewhat		
Drainage Class	Somewhat poorly	poorly to well	poorly to well	poorly to well	poorly to well	poorly to well		
5	to well drained	drained	drained	drained	drained	drained		
Soil Hydric Status	Site-specific	Site-specific	Site-specific	Site-specific	Site-specific	Site-specific		
Source of Hydrology	Hillslope seepage; Baseflow; Overbank Flooding	Hillslope seepage; Baseflow;	Hillslope seepage; Baseflow; Overbank Flooding	Hillslope seepage; Baseflow; Overbank Flooding	Hillslope seepage; Baseflow; Overbank Flooding	Hillslope seepage Baseflow; Overbank Flooding		
Hydrologic Impairment	Partially	Yes	No	Partially	Partially	Partially		
Native Vegetation Community	Piedmont/Moun	tain Mixed Bottor		orest. Successiona Wetlands 2 & 5.	al Deciduous Fores	t Land was once		
Percent Composition of Exotic/Invasive Vegetation	~30%	~55%	~10%	~40%	~55%	~35%		
	R	egulatory Consid	lerations					
Regulation	Applicable		Resolved		Supporting D	ocumentation		
Waters of the United States – Section 404	Yes		Yes		Categorica	l Exclusion		
Waters of the United States – Section 401	Yes		Yes		Categorica	l Exclusion		
Endangered Species Act	Yes		Yes	Categorica	l Exclusion			
Historic Preservation Act	Yes		Yes		Categorica	l Exclusion		
Coastal Zone Management Act (CZMA)/ Coastal Area Management Act (CAMA)	No		N/A		N	/A		
FEMA Floodplain Compliance	Yes		Yes		Categorical Exclusion			
Essential Fisheries Habitat	No		N/A		•	/A		
Notes:	1 110		- v - +		1	•		

Notes:

1. See Figure 2.3 of Mitigation Plan for key to soil series symbols.

2. All wetlands had been disturbed to some degree at the time the project was initiated. As a result, only remnants of native vegetative communities exist in the wetland areas.

3. Fescue is considered as invasive vegetation; it and other field grasses were the dominant nonnative wetland vegetation observed.

4. USGS Land Use Data (2001) used rather than CGIA Land Use Classification data which is more outdated (1996).

5. Source: Upper Catawba River Basin Restoration Priorities (NCEEP 2009) (https://deq.nc.gov/about/divisions/mitigation-services/dms-

planning/watershed-planning-documents/catawba-river-basin)

MICHAEL BAKER ENGINEERING, INC. YEAR 4 MONITORING REPORT UPPER SILVER CREEK RESTORATION PROJECT DMS PROJECT NO. 94645

Appendix C Vegetation Assessment Data

Includes:

Table 5. Vegetation Plot Mitigation Success Summary

Table 6. Vegetation Metadata

Table 7. Stem Count Arranged by Plot

Figure 4. Vegetation Monitoring Plot Photos

	Table 5. Vege	etation Plot M	itigation	
	Suco	cess Summary		
		(per acre)		
Plot #	Stream/ Wetland Stems ¹	Volunteers ²	Total ³	Success Criteria Met?
1	1214	0	1214	Yes
2	1133	0	1133	Yes
3	364	121	486	Yes
4	688	0	688	Yes
5	809	0	809	Yes
6	647	40	688	Yes
7	567	0	567	Yes
8	567	324	890	Yes
9	364	40	405	Yes
10	809	0	809	Yes
11	728	0	728	Yes
12	728	0	728	Yes
13	647	81	728	Yes
14	567	0	567	Yes
Project Avg	702	43	746	
Stem Class	characteristic	s		
¹ Stream/ Wetland Stems	-	d woody stems. akes. No vines	Includes shru	ubs, does NOT
² Volunteers	Native woody	stems. Not pla	nted. No vine	S.

³Total Planted + volunteer native woody stems. Includes live stakes. Excl. exotics. Excl. vines.

Exceeds requirements by 10%

	Table 6. Vegetation Metadata
Upper Silver Cre	eek Stream and Wetland Restoration - Project 94645
Report Prepared By	Russell Myers
Date Prepared	10/24/2018 13:33
database name	MY4_94645_UpperSilver_cvs-eep-entrytool-v2.3.1.mdb
database location	L:\projects\120598-Upr-Silver-FD\Monitoring\YR4 Monitoring\2.0 Monitoring
	Data\App C - Vegetation Data
computer name	ASHELRMYERS1
file size	64524288
DESCRIPTION OF WORKSHEETS IN THIS DOC	UMENT
Metadata	Description of database file, the report worksheets, and a summary of project(s) and project data.
Proj, planted	Each project is listed with its PLANTED stems per acre, for each year. This
Duci total stance	excludes live stakes.
Proj, total stems	Each project is listed with its TOTAL stems per acre, for each year. This includes live stakes, all planted stems, and all natural/volunteer stems.
Plots	List of plots surveyed with location and summary data (live stems, dead stems,
FIOLS	missing, etc.).
Vigor	Frequency distribution of vigor classes for stems for all plots.
Vigor by Spp	Frequency distribution of vigor classes listed by species.
Damage	List of most frequent damage classes with number of occurrences and percent
	of total stems impacted by each.
Damage by Spp	Damage values tallied by type for each species.
Damage by Plot	Damage values tallied by type for each plot.
Planted Stems by Plot and Spp	A matrix of the count of PLANTED living stems of each species for each plot;
	dead and missing stems are excluded.
ALL Stems by Plot and spp	
	A matrix of the count of total living stems of each species (planted and natural
	volunteers combined) for each plot; dead and missing stems are excluded.
PROJECT SUMMARY	
Project Code	94645
project Name	Upper Silver Creek
Description	Full Delivery stream and wetland restoration site
River Basin	Broad
length(ft)	5,169'
stream-to-edge width (ft)	Minimum of 30 ft
area (sq m)	62,321 sq. m.
Required Plots (calculated)	14
Sampled Plots	14

																Cu	rrent Plo	t Data (N	1Y4 2018)													
			94	645-01-0	001	94645-01-0002		002	94645-01-0003		94	94645-01-0004		94645-01-0005		94	94645-01-0006		94645-01-0007		007	94645-01-0008		008	94645-01-0009		09	94645-01-0010		10		
Scientific Name	Common Name	Species Type	Р	v	Т	Р	V	Т	Р	v	Т	Р	v	Т	Р	v	Т	Р	V	Т	Р	V	Т	Р	v	Т	Р	v	т	Р	V	Т
Acer rubrum	red maple	Tree	1		1	6		6		1	1	2		2										3		3						
Alnus serrulata	hazel alder	Shrub																														
Betula nigra	river birch	Tree							2		2							1		1	2		2							1		1
Carpinus caroliniana	American hornbeam	Tree	1		1	3		3				2		2							1		1				1		1	1		1
Cornus amomum	silky dogwood	Shrub							1		1	1		1	6		6	4		4	2		2									
Corylus cornuta	beaked hazelnut	Shrub Tree																1		1												
Diospyros virginiana	common persimmon	Tree	1		1							1		1										1	1	2						
Fraxinus pennsylvanica	green ash	Tree							2		2				8		8	1		1	1		1									
Liquidambar styraciflua	sweetgum	Tree																														
Liriodendron tulipifera	tuliptree	Tree				1		1				1		1										2	3	5		1	1	2		2
Platanus occidentalis	American sycamore	Tree	9		9	4		4	1	2	3	5		5	4		4	3	1	4	5		5	4	4	8	2		2	5		5
Quercus	oak	Tree																														
Quercus lyrata	overcup oak	Tree																														
Quercus michauxii	swamp chestnut oak	Tree	1		1	6		6				2		2	2		2	3		3	3		3	2		2		ļ		1		1
Quercus nigra	water oak	Tree							3		3																	ļ				
Quercus pagoda	cherrybark oak	Tree																										ļ				
Quercus phellos	willow oak	Tree	2		2	4		4				3		3				3		3							5	ļ	5	10		10
Unknown		Shrub or Tree																										ļ				
Vaccinium corymbosum	highbush blueberry	Shrub				1		1																				ļ				
Viburnum dentatum	southern arrowwood	Shrub	15		15	3		3																2		2	1		1			
		Stem count	30	0	30	28	0	28	9	3	12	17	0	17	20	0	20	16	1	17	14	0	14	14	8	22	9	1	10	20	0	20
		size (ares)		1			1			1			1			1			1			1			1			1			1	
		size (ACRES)		0.02			0.02			0.02			0.02			0.02			0.02			0.02			0.02			0.02			0.02	
		Species count	7	0	7	8	0	8	5	2	6	8	0	8	4	0	4	7	1	7	6	0	6	6	3	6	4	1	5	6	0	6
		Stems per ACRE	1214	0	1214	1133	0	1133	364	121	486	688	0	688	809	0	809	647	40	688	567	0	567	567	324	890	364	40	405	809	0	809

Stem count size (ares) 30 0 30 28 0 28 9 3 12 17 0 17 size (ares) 1 1 1 1 1 1 1 1 1 1 size (ACRES) 0.02 0.0

Scientific NameCommon NameSpecies TypePVTPAcer rubrumred mapleTree11111Alnus serrulatahazel alderShrub1111111Betula nigrariver birchTree336111 <th colspan="3">Current Plot Data (MY4 2018)</th> <th colspan="4">Annual Means</th>	Current Plot Data (MY4 2018)			Annual Means			
Acer rubrumred mapleTree1Alnus serrulatahazel alderShrub111Betula nigrariver birchTree336Carpinus carolinianaAmerican hornbeamTree11Cornus amomumsilky dogwoodShrub11113Corylus cornutabeaked hazelnutShrub Tree11Diospyros virginianacommon persimmonTree21Ciquidambar styracifluasweetgumTree21Liquidambar styracifluasweetgumTree112QuercusoakTree1121Quercus lyrataovercup oakTree111Quercus pagodacherrybark oakTree111Quercus pagodacherrybark oakTree111UnknownShrub or Tree1111Vaccinium corymbosumhighbush blueberryShrub111Viburnum dentatumsouthern arrowwoodShrub1111Size (ACRES)0.0211111	94645-01-0013	94645-01-0014	MY4 (2018)	MY3 (2017)	MY2 (2016)	MY1 (2015)	MY0 (2015)*
Alnus serrulatahazel alderShrub1111Betula nigrariver birchTree336Carpinus carolinianaAmerican hornbeamTree11Cornus amomumsilky dogwoodShrub11113Corylus cornutabeaked hazelnutShrub Tree11Diospyros virginianacommon persimmonTree21Fraxinus pennsylvanicagreen ashTree22Liquidambar styracifluasweetgumTree112QuercusoakTree112QuercusoakTree111Quercus nigrawater oakTree111Quercus pagodacherrybark oakTree111Quercus phelloswillow oakTree111UnknownShrubTree1111UnknownShrubImage: Stem count1801818Size (ACRES)0.02111111Size (ACRES)0.02111111	V T P V T	P V T	P V T	P V T	P V T	P V T	P V T
Betula nigrariver birchTree336Carpinus carolinianaAmerican hornbeamTree11Cornus amomumsilky dogwoodShrub11113Corylus cornutabeaked hazelnutShrub Tree113Diospyros virginianacommon persimmonTree22Liquidambar styracifluagreen ashTree22Liquidambar styracifluasweetgumTree112QuercusoakTree1122QuercusoakTree1122Quercus lyrataovercup oakTree1112Quercus nigrawater oakTree1111Quercus pagodacherrybark oakTree1111UnknownShrub or Tree11111Vaccinium corymbosumhighbush blueberryShrub1111Viburnum dentatumsouthern arrowwoodShrub11111size (ARCRES)0.02111111	1		13 1 14	12 1 13	13 1 14	14 14	12 12
Carpinus carolinianaAmerican hornbeamTree1Cornus amomumsilky dogwoodShrub11113Corylus cornutabeaked hazelnutShrub TreeDiospyros virginianacommon persimmonTreeFraxinus pennsylvanicagreen ashTree2Liquidambar styracifluasweetgumTreeLiriodendron tulipiferatuliptreeTreePlatanus occidentalisAmerican sycamoreTreeQuercusoakTreeQuercus lyrataovercup oakTreeQuercus nigrawater oakTreeQuercus pagodacherrybark oakTreeQuercus phelloswillow oakTreeVaccinium corymbosumhighbush blueberryShrubViburnum dentatumsouthern arrowwoodShrubsize (ACRES)0.02 </td <td>1</td> <td></td> <td>2 2</td> <td>2 2</td> <td>1 1</td> <td>1 1</td> <td>1 1</td>	1		2 2	2 2	1 1	1 1	1 1
Cornus amomumsilky dogwoodShrub11113Corylus cornutabeaked hazelnutShrub TreeDiospyros virginianacommon persimmonTreeFraxinus pennsylvanicagreen ashTree2Liquidambar styracifluasweetgumTreeLiriodendron tulipiferatuliptreeTreePlatanus occidentalisAmerican sycamoreTreeQuercusoakTree </td <td>6 3 3</td> <td>1 1</td> <td>19 19</td> <td>20 20</td> <td>19 19</td> <td>21 21</td> <td>8 8</td>	6 3 3	1 1	19 19	20 20	19 19	21 21	8 8
Corylus cornutabeaked hazelnutShrub TreeImage: Shrub	1		10 10	10 1 11	11 1 12	11 11	9 9
Dispyros virginianacommon persimmonTreeImage: Step 1Fraxinus pennsylvanicagreen ashTree2Liquidambar styracifluasweetgumTree2Liriodendron tulipiferatuliptreeTree11Platanus occidentalisAmerican sycamoreTree11QuercusoakTree112Quercus lyrataovercup oakTree111Quercus nigrawater oakTree111Quercus pagodacherrybark oakTree111Quercus phelloswillow oakTree111UnknownShrub or Tree1111Vaccinium corymbosumhighbush blueberryShrub111Stem count180181818size (ACRES)0.021111	3 2 2 4		30 2 32	30 30	32 5 37	32 32	16 16
Fraxinus pennsylvanicagreen ashTree2Liquidambar styracifluasweetgumTree11Liriodendron tulipiferatuliptreeTree11Platanus occidentalisAmerican sycamoreTree112QuercusoakTree112Quercus lyrataovercup oakTree111Quercus nigrawater oakTree111Quercus pagodacherrybark oakTree111Quercus phelloswillow oakTree111UnknownShrub or Tree1111Viburnum dentatumsouthern arrowwoodShrub111size (ares)111111size (ACRES)0.020.020.0200			1 1	1 1	1 1	1 1	1 1
Liquidambar styracifluasweetgumTreeImage: SweetgumTreeLiriodendron tulipiferatuliptreeTreeImage: SweetgumImage: SweetgumImage: SweetgumPlatanus occidentalisAmerican sycamoreTreeImage: SweetgumImage: SweetgumImage: SweetgumImage: SweetgumQuercusoakTreeImage: SweetgumImage: SweetgumIma			3 1 4	3 3	3 3	3 3	3 3
Liriodendron tulipiferatuliptreeTreeIIIPlatanus occidentalisAmerican sycamoreTree112IQuercusoakTreeII12IQuercus lyrataovercup oakTreeIIIIIQuercus michauxiiswamp chestnut oakTreeIIIIIIQuercus nigrawater oakTreeIII<	2	4 4	18 18	18 18	18 1 19	19 19	12 12
Platanus occidentalisAmerican sycamoreTree112QuercusoakTree </td <td></td> <td></td> <td></td> <td>3 3</td> <td>1 1</td> <td></td> <td></td>				3 3	1 1		
QuercusoakTreeImage: Constraint of the structureQuercus lyrataovercup oakTree11Quercus michauxiiswamp chestnut oakTree11Quercus nigrawater oakTree111Quercus pagodacherrybark oakTree111Quercus phelloswillow oakTree1111UnknownShrub or Tree11111Vaccinium corymbosumhighbush blueberryShrub111Viburnum dentatumsouthern arrowwoodShrub111size (ares)1111111Stem count180181818111			6 4 10	6 7 13	7 1 8	11 11	10 10
Quercus lyrataovercup oakTreeIIIQuercus michauxiiswamp chestnut oakTree111IIQuercus nigrawater oakTreeII<	2 3 3	2 2	50 7 57	53 9 62	54 5 59	60 60	48 48
Quercus michauxiiswamp chestnut oakTree111Quercus nigrawater oakTree </td <td></td> <td></td> <td></td> <td></td> <td>1 1</td> <td>2 2</td> <td></td>					1 1	2 2	
Quercus nigrawater oakTreeImage: Second sec	1		1 1	1 1	1 1	1 1	
Quercus pagodacherrybark oakTreeIIIQuercus phelloswillow oakTree1111UnknownShrub or TreeIIIIIVaccinium corymbosumhighbush blueberryShrubIIIViburnum dentatumsouthern arrowwoodShrubIIIStem count1801818size (ares)Iolspan="4">Stem countIIIIIIStem countIIIsize (ares)IIolspan="4">O.02I	8 8	4 4	33 33	34 1 35	32 32	33 33	20 20
Quercus phellos willow oak Tree 1 1 1 Unknown Shrub or Tree Image: Shrub or			3 3	3 3	3 3	4 4	4 4
Unknown Shrub or Tree Image: Constraint of the state of the s		1 1	1 1	1 1			
Vaccinium corymbosum highbush blueberry Shrub Image: Constraint of the second se	1	2 2	31 31	32 32	32 32	32 32	17 17
Viburnum dentatum southern arrowwood Shrub Image: Shrub				2 2	7 7	10 10	6 6
Stem count 18 0 18 18 size (ares) 1 5 1 5 size (ACRES) 0.02 0.02 0			1 1	1 1	1 1	1 1	1 1
size (ares) 1 size (ACRES) 0.02			21 21	20 20	21 21	21 21	21 21
size (ACRES) 0.02	0 18 16 2 18	14 0 14	243 15 258	249 22 271	256 16 272	277 0 277	189 0 189
	1 1	1	14	14	14	14	9
Species count 6 0 6 0	0.02 0.02	0.02	0.35	0.35	0.35	0.35	0.22
	0 9 4 1 4	6 0 6	17 5 17	18 6 19	17 8 19	18 0 18	16 0 16
Stems per ACRE 728 0 728 728	0 728 647 81 728	567 0 567	702 43 746	720 64 783	740 46 786	801 0 801	850 0 850

V = Volunteer

Indicates that the stems per acre exceeds requirements by 10% Indicates that the stems per acre exceeds requirements, but by less than 10%

T = Total

*MYO included 9 vegetation plots. However, upon review, it was discovered that we needed to have 14 plots to meet guidelines. Five additional plots were added in the Fall of 2015 and the MY1 and later means include these additional plots

Figure 4. Upper Silver Creek - Vegetation Plot Photos, DMS Project #94645

Photo 1. Vegetation Plot 1 – Tree photo (October 18, 2018).

Photo 2. Vegetation Plot 1 – Herbaceous photo (October 18, 2018).

Photo 3. Vegetation Plot 2 – Tree photo (October 18, 2018).

Photo 4. Vegetation Plot 2 – Herbaceous photo (October 18, 2018).

Photo 5. Vegetation Plot 3 – Tree photo (October 18, 2018).

Photo 6. Vegetation Plot 3 – Herbaceous photo (October 18, 2018).

Photo 7. Vegetation Plot 4 – Tree photo (October 18, 2018).

Photo 8. Vegetation Plot 4 – Herbaceous photo (October 18, 2018).



Photo 9. Vegetation Plot 5 – Tree photo (October 18, 2018).

Photo Point 10, Vegetation Plot 5 – Herbaceous photo (October 18, 2018).

Photo 11. Vegetation Plot 6 – Tree photo (October 18, 2018).

Photo 12. Vegetation Plot 6 – Herbaceous photo (October 18, 2018).

Photo 13. Vegetation Plot 7 – Tree photo (October 18, 2018).

Photo 14. Vegetation Plot 7 – Herbaceous photo (October 18, 2018).

Photo 15. Vegetation Plot 8 – Tree photo (October 18, 2018).

Photo 16. Vegetation Plot 8 – Herbaceous photo (October 18, 2018).

Photo 17. Vegetation Plot 9 – Tree photo (October 18, 2018).

Photo 18. Vegetation Plot 9 – Herbaceous photo (October 18, 2018).

Photo 19. Vegetation Plot 10 – Tree photo (October 18, 2018).

Photo 20. Vegetation Plot 10 – Herbaceous photo (October 18, 2018).

Photo 21. Vegetation Plot 11 – Tree photo (October 18, 2018).

Photo 23. Vegetation Plot 12 – Tree photo (October 18, 2018).

Photo 22. Vegetation Plot 11 – Herbaceous photo (October 18, 2018).

Photo 24. Vegetation Plot 12 – Herbaceous photo (October 18, 2018).

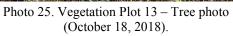


Photo 26. Vegetation Plot 13 – Herbaceous photo (October 18, 2018).

Photo 27. Vegetation Plot 14 – Tree photo (October 18, 2018).

Photo 28. Vegetation Plot 14 – Herbaceous photo (October 18, 2018).

Appendix D Stream Assessment Data

Includes:

- Figure 5. Stream Photos by Channel and Station
- Table 8. Visual Morphological Stability Assessment
- Table 9. Verification of Bankfull or Greater than Bankfull Events
- Figure 6. Cross-Sections with Annual Overlays
- Figure 7. Longitudinal Profiles with Annual Overlays
- Figure 8. Pebble Count Plots with Annual Overlays
- Table 10. Monitoring Year 4 Stream Summary
- Table 11. Morphology and Hydraulic Monitoring Summary

Figure 5. Upper Silver Creek Stream Photos by Channel and Station – MY4 (2018)

Photo 1. Mainstem Photo Point 1 – Station 29+26 (November 18, 2018) downstream view from left bank.

Photo 3. Mainstem Photo Point 2 – Station 26+44 (November 18, 2018) downstream view from left bank.

Photo 2. Mainstem Photo Point 1 – Station 29+26 (November 18, 2018) upstream view from left bank.

Photo 4. Mainstem Photo Point 2 – Station 26+44 (November 18, 2018) upstream from left bank.

Photo 5. Mainstem Photo Point 3 – Station 24+70 (November 18, 2018) upstream from right bank.

Photo 6. Mainstem Photo Point 3 – Station 24+70 (November 18, 2018) downstream from right bank.

Photo 7. Mainstem Photo Point 4 (PP4) – Station 20+30 (November 18, 2018) downstream from left bank.

Photo 8. Mainstem Photo Point 4 (PP4) – Station 20+30 (November 18, 2018) upstream from left bank.

Photo 9. Mainstem Photo Point 5 – Station 16+03 (November 18, 2018) upstream from right bank.

Photo 11. Mainstem Photo Point 6 – Station 13+03 (November 18, 2018) upstream from right bank.

Photo 10, Mainstem Photo Point 5 – Station 16+03 (November 18, 2018) downstream from right bank.

Photo 12. Mainstem Photo Point 6 – Station 13+03 (November 18, 2018) downstream from right bank.

Photo 13. Mainstem Photo Point 7 – Station 10+11 (November 18, 2018) downstream from left bank.

Photo 15. Mainstem Photo Point 8 – Station 5+06 (November 18, 2018) upstream from right bank.

Photo 17. Mainstem Photo Point 9 – Station 3+87 (November 18, 2018) downstream from left bank.

Photo 14. Mainstem Photo Point 7 – Station 10+11 (November 18, 2018) upstream from left bank.

Photo 16. Mainstem Photo Point 8 – Station 5+06 (November 18, 2018) downstream from right bank.

Photo 18. Mainstem Photo Point 9 – Station 3+87 (November 18, 2018) upstream from left bank.

Photo 19. Mainstem Photo Point 10 - Stat. 1+22 (November 18, 2018) downstream from left bank.

Photo 20. Mainstem Photo Point 10 - Stat. 1+22 (November 18, 2018) upstream from left bank.

Unnamed Tributary 1 - Monitoring Year 4 (2018)

Intentionally Left Blank

(November 18, 2018) upstream from left bank.

Photo 22. UT1 Photo Point 2 – Station 4+07 (November 18, 2018) downstream from left bank.

Photo 23. UT1 Photo Point 2 – Station 4+07 (November 18, 2018) upstream from left bank.

Photo 24. UT1 Photo Point 3 – Station 2+55 (November 18, 2018) upstream from right bank.

Photo 25. UT1 Photo Point 3 – Station 2+55 (November 18, 2018) downstream from right bank.

Photo 26. UT1 Photo Point 4 – Station 0+55 (November 18, 2018) downstream from left bank.

Unnamed Tributary 2 – Monitoring Year 3 (2017)

Photo 27. UT1 Photo Point 4 – Station 0+55 (November 18, 2018) upstream from left bank.

Photo 28. UT2 Photo Point 1 – Station 2+15 (November 18, 2018) downstream from left bank.

Photo 29. UT2 Photo Point 1 – Station 2+15 (November 18, 2018) upstream from left bank.

Photo 30. UT2 Photo Point 2 – Station 0+96 (November 18, 2018) upstream from right bank.

Photo 31. UT2 Photo Point 2 – Station 0+96 (November 18, 2018) downstream from right bank.

Photo 32. UT2 Photo Point 3 – Station 0+02 (November 18, 2018) downstream from right bank.

Unnamed Tributary 3 – Monitoring Year 4 (2018)

Photo 33. UT2 Photo Point 3 – Station 0+02 (November 18, 2018) upstream from right bank.

Photo 34. UT3 Photo Point 1 – Station 12+10 (October 18, 2018) downstream from left bank.

Photo 35. UT3 Photo Point 1 – Station 12+10 (October 18, 2018) upstream from left bank.

Photo 36. UT3 Photo Point 2 – Station 10+66 (October 18, 2018) upstream from right bank.

Photo 37. UT3 Photo Point 2 – Station 10+66 (October 18, 2018) downstream from right bank.

Photo 38. UT3 Photo Point 3 – Station 8+10 (October 18, 2018) downstream from left bank.

Photo 39. UT3 Photo Point 3 – Station 8+10 (October 18, 2018) upstream from left bank.

Photo 40. UT3 Photo Point 4 – Station 7+05 (October 18, 2018) downstream from left bank.

Photo 41. UT3 Photo Point 4 – Station 7+05 (October 18, 2018) upstream from left bank.

Photo 42. UT3 Photo Point 5 – Station 5+95 (October 18, 2018) downstream from left bank.

Photo 43. UT3 Photo Point 5 – Station 5+95 (October 18, 2018) upstream from left bank.

Photo 44. UT3 Photo Point 6 – Station 4+55 (October 18, 2018) upstream from right bank.

Photo 45. UT3 Photo Point 6 – Station 4+55 (October 18, 2018) downstream from right bank.

Photo 46. UT3 Photo Point 7 – Station 3+60 (October 18, 2018) upstream to structure.

Photo 47. UT3 Photo Point 8 – Station 2+70 (October 18, 2018) upstream to structure.

Photo 48. UT3 Photo Point 9 – Station 1+90 (October 18, 2018) upstream to structure.

Photo 49. UT3 Photo Point 10 – Station 0+60 (October 18, 2018) downstream to structure.

	Silver Creek,	Reach 1 (838 LF)				
		(# Stable) Number		Total Number	% Performing	Feature
Feature		Performing		/ feet in unstable	in Stable	Perfomance
Category	Metric (per As-Built and reference baselines)	as Intended	per As-Built	state	Condition	Mean or Tota
A. Riffles	1. Present?	4	4	0	100	
	2. Armor stable (e.g. no displacement)?	4	4	0	100	
	3. Facet grades appears stable?	4	4	0	100	
	4. Minimal evidence of embedding/fining?	4	4	0	100	
	5. Length appropriate?	4	4	0	100	100%
B. Pools	1. Present? (e.g. not subject to severe aggradation or migration?)	4	4	0	100	
	2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?)	4	4	0	100	
	3. Length appropriate?	4	4	0	100	100%
C. Thalweg	1. Unstream of pool (structure) contained (0()	100	100	0	100	
-	1. Upstream of pool (structure) centering? (%)		100	0	100 100	4009/
	2. Downstream of pool (structure) centering? (%)	100	100	0	100	100%
D. Meanders	1. Outer bend in state of limited/controlled erosion?	3	4	0	75	
	2. Of those eroding, # w/concomitant point bar formation?	4	4	0	100	
	3. Apparent Rc within spec?	4 4	4	0	100	
	4. Sufficient floodplain access and relief?	4 4	4 4	0	100	94%
			- - T	<u>v</u>		5470
E. Bed	1. General channel bed aggradation areas (bar formation)	838	838	0	100	
	2. Channel bed degradation - areas of increasing down-					
	cutting or head cutting?	838	838	0	100	100%
F. Vanes,	1. Free of back or arm scour?	6	6	0	100	
	2. Height appropriate?	6	6	0	100	
-	3. Angle and geometry appear appropriate?	6	6	0	100	
	4. Free of piping or other structural failures?	6	6	0	100	100%
G. Wads/	1. Free of scour?	4	4	0	100	
Boulders	2. Footing stable?	4	4	0	100	100%
	Silver Creek, F	Reach 2 (2,178 LF)				
		(# Stable) Number		Total Number	% Performing	Feature
Feature		Performing	Total number	/ feet in unstable	in Stable	Perfomance
	Metric (per As-Built and reference baselines)	as Intended	per As-Built	state	Condition	Mean or Tota
	1. Present?		17		Contaition	mount of 10te
					100	
	2 Armor stable (e.g. no displacement)?	17		0	100	
	2. Armor stable (e.g. no displacement)?	17	17	0	100	
	3. Facet grades appears stable?	17 17	17 17	0 0	100 100	
	3. Facet grades appears stable?4. Minimal evidence of embedding/fining?	17 17 17 17	17 17 17	0 0 0	100 100 100	100%
	3. Facet grades appears stable?	17 17	17 17	0 0	100 100	100%
	3. Facet grades appears stable?4. Minimal evidence of embedding/fining?5. Length appropriate?	17 17 17 17 17	17 17 17 17 17	0 0 0 0	100 100 100 100	100%
B. Pools	 3. Facet grades appears stable? 4. Minimal evidence of embedding/fining? 5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 	17 17 17 17 17 17 16	17 17 17 17 17 17 16	0 0 0 0	100 100 100 100 100	100%
3. Pools	 3. Facet grades appears stable? 4. Minimal evidence of embedding/fining? 5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?) 	17 17 17 17 17 16 16	17 17 17 17 17 16 16	0 0 0 0	100 100 100 100 100 100	
B. Pools	 3. Facet grades appears stable? 4. Minimal evidence of embedding/fining? 5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 	17 17 17 17 17 17 16	17 17 17 17 17 17 16	0 0 0 0 0	100 100 100 100 100	100%
B. Pools	 3. Facet grades appears stable? 4. Minimal evidence of embedding/fining? 5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?) 3. Length appropriate? 	17 17 17 17 17 16 16	17 17 17 17 17 16 16	0 0 0 0 0	100 100 100 100 100 100	
B. Pools C. Thalweg	 3. Facet grades appears stable? 4. Minimal evidence of embedding/fining? 5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?) 	17 17 17 17 17 16 16 16	17 17 17 17 17 16 16 16	0 0 0 0 0 0 0	100 100 100 100 100 100 100	
B. Pools C. Thalweg	 3. Facet grades appears stable? 4. Minimal evidence of embedding/fining? 5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?) 3. Length appropriate? 1. Upstream of pool (structure) centering? (%) 	17 17 17 17 17 16 16 16 16 16 16 10	17 17 17 17 16 16 16 16 16 100	0 0 0 0 0 0 0	100 100 100 100 100 100 100 100	100%
B. Pools C. Thalweg	 3. Facet grades appears stable? 4. Minimal evidence of embedding/fining? 5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?) 3. Length appropriate? 1. Upstream of pool (structure) centering? (%) 	17 17 17 17 17 16 16 16 16 16 16 10	17 17 17 17 16 16 16 16 16 100	0 0 0 0 0 0 0	100 100 100 100 100 100 100 100	100%
B. Pools C. Thalweg D. Meanders	 Facet grades appears stable? Minimal evidence of embedding/fining? Length appropriate? Present? (e.g. not subject to severe aggradation or migration?) Sufficiently deep (Max Pool D:Mean Bkf >1.6?) Length appropriate? Upstream of pool (structure) centering? (%) Downstream of pool (structure) centering? (%) 	17 17 17 17 17 16 16 16 16 16 10 100	17 17 17 17 16 16 16 16 10 100	0 0 0 0 0 0 0 0 0	100 100 100 100 100 100 100 100 100	100%
B. Pools C. Thalweg D. Meanders	 3. Facet grades appears stable? 4. Minimal evidence of embedding/fining? 5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?) 3. Length appropriate? 1. Upstream of pool (structure) centering? (%) 2. Downstream of pool (structure) centering? (%) 1. Outer bend in state of limited/controlled erosion? 	17 17 17 17 17 16 16 16 16 100 100 100 100	17 17 17 17 16 16 16 16 100 100 100	0 0 0 0 0 0 0 0 0 0 0	100 100 100 100 100 100 100 100 100 100	100%
B. Pools C. Thalweg D. Meanders	 Facet grades appears stable? Minimal evidence of embedding/fining? Length appropriate? Present? (e.g. not subject to severe aggradation or migration?) Sufficiently deep (Max Pool D:Mean Bkf >1.6?) Length appropriate? Upstream of pool (structure) centering? (%) Downstream of pool (structure) centering? (%) Downstream of pool (structure) centering? (%) Outer bend in state of limited/controlled erosion? Of those eroding, # w/concomitant point bar formation? 	17 17 17 17 17 16 16 16 16 100 100 100 100 100	17 17 17 17 16 16 16 100 100 100 100 100	0 0 0 0 0 0 0 0 0 0 0	100 100 100 100 100 100 100 100 100 100	100%
3. Pools C. Thalweg D. Meanders	 Facet grades appears stable? Minimal evidence of embedding/fining? Length appropriate? Present? (e.g. not subject to severe aggradation or migration?) Sufficiently deep (Max Pool D:Mean Bkf >1.6?) Length appropriate? Upstream of pool (structure) centering? (%) Downstream of pool (structure) centering? (%) Outer bend in state of limited/controlled erosion? Of those eroding, # w/concomitant point bar formation? Apparent Rc within spec? 	17 17 17 17 17 16 16 16 16 100 100 100 100 100 16 16 16 16	17 17 17 17 16 16 16 100 100 100 100 16 16 16	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	100 100 100 100 100 100 100 100 100 100	100%
B. Pools C. Thalweg D. Meanders E. Bed	 3. Facet grades appears stable? 4. Minimal evidence of embedding/fining? 5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?) 3. Length appropriate? 1. Upstream of pool (structure) centering? (%) 2. Downstream of pool (structure) centering? (%) 1. Outer bend in state of limited/controlled erosion? 2. Of those eroding, # w/concomitant point bar formation? 3. Apparent Rc within spec? 4. Sufficient floodplain access and relief? 1. General channel bed aggradation areas (bar formation) 	17 17 17 17 17 16 16 16 16 100 100 100 100 100 16 16 16 16	17 17 17 17 16 16 16 100 100 100 100 16 16 16	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	100 100 100 100 100 100 100 100 100 100	100%
B. Pools C. Thalweg D. Meanders E. Bed	 3. Facet grades appears stable? 4. Minimal evidence of embedding/fining? 5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?) 3. Length appropriate? 1. Upstream of pool (structure) centering? (%) 2. Downstream of pool (structure) centering? (%) 1. Outer bend in state of limited/controlled erosion? 2. Of those eroding, # w/concomitant point bar formation? 3. Apparent Rc within spec? 4. Sufficient floodplain access and relief? 	17 17 17 17 16 16 16 16 16 16 16 16 16 16 16 100 100 100 16 16 16 16 16 16 16	17 17 17 17 16 16 16 16 100 100 100 100 16 16 16 16	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	100 100 100 100 100 100 100 100 100 100	100%
B. Pools C. Thalweg D. Meanders E. Bed	 3. Facet grades appears stable? 4. Minimal evidence of embedding/fining? 5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?) 3. Length appropriate? 1. Upstream of pool (structure) centering? (%) 2. Downstream of pool (structure) centering? (%) 1. Outer bend in state of limited/controlled erosion? 2. Of those eroding, # w/concomitant point bar formation? 3. Apparent Rc within spec? 4. Sufficient floodplain access and relief? 1. General channel bed aggradation areas (bar formation) 	17 17 17 17 16 16 16 16 16 16 16 16 16 16 16 100 100 100 16 16 16 16 16 16 16	17 17 17 17 16 16 16 16 100 100 100 100 16 16 16 16	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	100 100 100 100 100 100 100 100 100 100	100%
B. Pools C. Thalweg D. Meanders E. Bed General	 Facet grades appears stable? Minimal evidence of embedding/fining? Length appropriate? Present? (e.g. not subject to severe aggradation or migration?) Sufficiently deep (Max Pool D:Mean Bkf >1.6?) Length appropriate? Upstream of pool (structure) centering? (%) Downstream of pool (structure) centering? (%) Outer bend in state of limited/controlled erosion? Of those eroding, # w/concomitant point bar formation? Apparent Rc within spec? Sufficient floodplain access and relief? Channel bed aggradation areas (bar formation) Channel bed degradation - areas of increasing down- 	17 17 17 17 16 16 16 16 100 100 100 16 16 16 16 16 16 16 16 16 16	17 17 17 17 16 16 16 16 100 100 100 100 16 16 16 16 16 16 16 2,178	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	100 100 100 100 100 100 100 100 100 100	100% 100% 100%
3. Pools C. Thalweg D. Meanders E. Bed General F. Vanes,	 Facet grades appears stable? Minimal evidence of embedding/fining? Length appropriate? Present? (e.g. not subject to severe aggradation or migration?) Sufficiently deep (Max Pool D:Mean Bkf >1.6?) Length appropriate? Upstream of pool (structure) centering? (%) Downstream of pool (structure) centering? (%) Outer bend in state of limited/controlled erosion? Of those eroding, # w/concomitant point bar formation? Apparent Rc within spec? Sufficient floodplain access and relief? Channel bed aggradation areas (bar formation) Channel bed degradation - areas of increasing down- 	17 17 17 17 16 16 16 16 100 100 100 16 16 16 16 16 16 16 16 16 16	17 17 17 17 16 16 16 16 100 100 100 100 16 16 16 16 16 16 16 2,178	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	100 100 100 100 100 100 100 100 100 100	100% 100% 100%
B. Pools C. Thalweg D. Meanders E. Bed General F. Vanes, Rock/Log	 Facet grades appears stable? Minimal evidence of embedding/fining? Length appropriate? Present? (e.g. not subject to severe aggradation or migration?) Sufficiently deep (Max Pool D:Mean Bkf >1.6?) Length appropriate? Upstream of pool (structure) centering? (%) Downstream of pool (structure) centering? (%) Outer bend in state of limited/controlled erosion? Of those eroding, # w/concomitant point bar formation? Apparent Rc within spec? Sufficient floodplain access and relief? General channel bed aggradation areas (bar formation) Channel bed degradation - areas of increasing down-cutting or head cutting? Free of back or arm scour? Height appropriate? 	17 17 17 17 16 16 16 16 100 100 100 100 10	17 17 17 17 16 16 16 16 100 100 100 100 100 16 16 16 16 16 16 2,178 2,178	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	100 100 100 100 100 100 100 100 100 100	100% 100% 100%
3. Pools C. Thalweg D. Meanders E. Bed General F. Vanes, Rock/Log Drop	 Facet grades appears stable? Minimal evidence of embedding/fining? Length appropriate? Present? (e.g. not subject to severe aggradation or migration?) Sufficiently deep (Max Pool D:Mean Bkf >1.6?) Length appropriate? Upstream of pool (structure) centering? (%) Downstream of pool (structure) centering? (%) Outer bend in state of limited/controlled erosion? Of those eroding, # w/concomitant point bar formation? Apparent Rc within spec? Sufficient floodplain access and relief? General channel bed aggradation areas (bar formation) Channel bed degradation - areas of increasing down-cutting or head cutting? Free of back or arm scour? Height appropriate? Angle and geometry appear appropriate? 	17 17 17 17 17 16 16 16 16 16 16 16 16 100 100 100 100 2,178 2,178 21 21 21 21	17 17 17 17 16 16 16 16 100 100 100 100 16 16 16 16 16 16 16 2,178 2,178 21 21 21	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	100 100 100 100 100 100 100 100 100 100	100% 100% 100%
3. Pools C. Thalweg D. Meanders E. Bed General F. Vanes, Rock/Log Drop	 Facet grades appears stable? Minimal evidence of embedding/fining? Length appropriate? Present? (e.g. not subject to severe aggradation or migration?) Sufficiently deep (Max Pool D:Mean Bkf >1.6?) Length appropriate? Upstream of pool (structure) centering? (%) Downstream of pool (structure) centering? (%) Outer bend in state of limited/controlled erosion? Of those eroding, # w/concomitant point bar formation? Apparent Rc within spec? Sufficient floodplain access and relief? General channel bed aggradation areas (bar formation) Channel bed degradation - areas of increasing down-cutting or head cutting? Free of back or arm scour? Height appropriate? 	17 17 17 17 17 16 16 16 16 16 16 16 16 100 100 2,178 2,178 21 21	17 17 17 17 16 16 16 16 100 100 100 100 100 16 16 16 16 16 16 16 2,178 2,178 2,178	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	100 100 100 100 100 100 100 100 100 100	100% 100% 100%
3. Pools C. Thalweg D. Meanders E. Bed General F. Vanes, Rock/Log Drop	 Facet grades appears stable? Minimal evidence of embedding/fining? Length appropriate? Present? (e.g. not subject to severe aggradation or migration?) Sufficiently deep (Max Pool D:Mean Bkf >1.6?) Length appropriate? Upstream of pool (structure) centering? (%) Downstream of pool (structure) centering? (%) Outer bend in state of limited/controlled erosion? Of those eroding, # w/concomitant point bar formation? Apparent Rc within spec? Sufficient floodplain access and relief? General channel bed aggradation areas (bar formation) Channel bed degradation - areas of increasing down-cutting or head cutting? Free of back or arm scour? Height appropriate? Angle and geometry appear appropriate? 	17 17 17 17 17 16 16 16 16 16 16 16 16 100 100 100 100 2,178 2,178 21 21 21 21	17 17 17 17 16 16 16 16 100 100 100 100 16 16 16 16 16 16 16 2,178 2,178 21 21 21	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	100 100 100 100 100 100 100 100 100 100	100% 100% 100%

••	Creek Restoration Project: DMS Project ID No. 94645	1 (502 LF)				
			1			
				T (151 - 1		- <i>.</i>
		(# Stable) Number		Total Number	% Performing	Feature
Feature		Performing	Total number	/ feet in unstable	in Stable	Perfomance
Category	Metric (per As-Built and reference baselines)	as Intended	per As-Built	state	Condition	Mean or Tota
A. Riffles	1. Present?	7	7	0	100	
	2. Armor stable (e.g. no displacement)?	7	7	0	100	
	3. Facet grades appears stable?	7	7	0	100	
	4. Minimal evidence of embedding/fining?	7	7	0	100	
	5. Length appropriate?	7	7	0	100	100%
3. Pools	1. Present? (e.g. not subject to severe aggradation or migration?)	10	10	0	100	
	2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?)	10	10	0	100	
	3. Length appropriate?	10	10	0	100	100%
		10	10	0	100	10070
The house ¹	1. Upstream of pool (structure) centering? (%)	100	100	0	100	
C. Thalweg ¹		100	100		100	4009/
	2. Downstream of pool (structure) centering? (%)	100	100	0	100	100%
NA	A Outer handling state of Party March 1991 - 1992	-	_		100	
D. Meanders	1. Outer bend in state of limited/controlled erosion?	7	7	0	100	
	2. Of those eroding, # w/concomitant point bar formation?	7	7	0	100	
	3. Apparent Rc within spec?	7	7	0	100	L
	4. Sufficient floodplain access and relief?	7	7	0	100	100%
E. Bed	1. General channel bed aggradation areas (bar formation)	502	502	0	100	
General	2. Channel bed degradation - areas of increasing down-					
	cutting or head cutting?	502	502	0	100	100%
. Vanes,	1. Free of back or arm scour?	11	11	0	100	
Rock/Log	2. Height appropriate?	11	11	0	100	
Drop	3. Angle and geometry appear appropriate?	11	11	0	100	
Structures	4. Free of piping or other structural failures?		11		100	100%
		11	11	0	100	100%
		N1/A	N1/A	N1/A	N1/A	
G. Wads/	1. Free of scour? 2. Footing stable?	N/A N/A	N/A N/A	N/A N/A	N/A N/A	100%
Boulders		19/74		11/74	1 1/7	10070
	U12, R	each 1 (103 LF)				
	012, R	each 1 (103 LF)				
	U12, R			Total Number	% Performing	Feature
Feature		(# Stable) Number	Total number	Total Number	% Performing	Feature
		(# Stable) Number Performing	Total number	/ feet in unstable	in Stable	Perfomance
Category	Metric (per As-Built and reference baselines)	(# Stable) Number Performing as Intended	Total number per As-Built	/ feet in unstable state	in Stable Condition	Perfomance
Category	Metric (per As-Built and reference baselines) 1. Present?	(# Stable) Number Performing as Intended 4	per As-Built 4	/ feet in unstable state 0	in Stable Condition 100	Perfomance
Category	Metric (per As-Built and reference baselines) 1. Present? 2. Armor stable (e.g. no displacement)?	(# Stable) Number Performing as Intended 4 4		/ feet in unstable state 0 0	in Stable Condition 100 100	Perfomance
Feature Category A. Riffles	Metric (per As-Built and reference baselines) 1. Present? 2. Armor stable (e.g. no displacement)? 3. Facet grades appears stable?	(# Stable) Number Performing as Intended 4 4 4	per As-Built 4	/ feet in unstable state 0 0 0	in Stable Condition 100 100 100	Feature Perfomance Mean or Tota
Category	Metric (per As-Built and reference baselines) 1. Present? 2. Armor stable (e.g. no displacement)?	(# Stable) Number Performing as Intended 4 4	per As-Built 4 4	/ feet in unstable state 0 0	in Stable Condition 100 100	Perfomance
Category	Metric (per As-Built and reference baselines) 1. Present? 2. Armor stable (e.g. no displacement)? 3. Facet grades appears stable?	(# Stable) Number Performing as Intended 4 4 4	per As-Built 4 4 4	/ feet in unstable state 0 0 0	in Stable Condition 100 100 100	Perfomance
Category	Metric (per As-Built and reference baselines) 1. Present? 2. Armor stable (e.g. no displacement)? 3. Facet grades appears stable? 4. Minimal evidence of embedding/fining?	(# Stable) Number Performing as Intended 4 4 4 4 4 4	per As-Built 4 4 4 4 4 4	/ feet in unstable state 0 0 0 0 0	in Stable Condition 100 100 100 100	Perfomance Mean or Tota
Category A. Riffles	Metric (per As-Built and reference baselines) 1. Present? 2. Armor stable (e.g. no displacement)? 3. Facet grades appears stable? 4. Minimal evidence of embedding/fining?	(# Stable) Number Performing as Intended 4 4 4 4 4 4	per As-Built 4 4 4 4 4 4	/ feet in unstable state 0 0 0 0 0	in Stable Condition 100 100 100 100	Perfomance Mean or Tot
Category A. Riffles	Metric (per As-Built and reference baselines) 1. Present? 2. Armor stable (e.g. no displacement)? 3. Facet grades appears stable? 4. Minimal evidence of embedding/fining? 5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?)	(# Stable) Number Performing as Intended 4 4 4 4 4 4 4 4	per As-Built 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	/ feet in unstable state 0 0 0 0 0 0	in Stable Condition 100 100 100 100	Perfomance Mean or Tot
Category A. Riffles	Metric (per As-Built and reference baselines) 1. Present? 2. Armor stable (e.g. no displacement)? 3. Facet grades appears stable? 4. Minimal evidence of embedding/fining? 5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?)	(# Stable) Number Performing as Intended 4 4 4 4 4 4 4 4 5 5 5	per As-Built 4 4 4 4 4 4 5	/ feet in unstable state 0 0 0 0 0 0 0 0 0	in Stable Condition 100 100 100 100 100 100 100	Perfomance Mean or Tot
Category A. Riffles	Metric (per As-Built and reference baselines) 1. Present? 2. Armor stable (e.g. no displacement)? 3. Facet grades appears stable? 4. Minimal evidence of embedding/fining? 5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?)	(# Stable) Number Performing as Intended 4 4 4 4 4 4 4 5	per As-Built 4 4 4 4 4 4 4 5 5 5	/ feet in unstable state 0 0 0 0 0 0	in Stable Condition 100 100 100 100 100 100	Perfomance Mean or Tota
Category A. Riffles B. Pools	Metric (per As-Built and reference baselines) 1. Present? 2. Armor stable (e.g. no displacement)? 3. Facet grades appears stable? 4. Minimal evidence of embedding/fining? 5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?) 3. Length appropriate?	(# Stable) Number Performing as Intended 4 4 4 4 4 4 4 5 5 5 5 5 5	per As-Built 4 4 4 4 4 4 5 5 5 5 5	/ feet in unstable state 0 0 0 0 0 0 0 0 0 0	in Stable Condition 100 100 100 100 100 100 100	Perfomance Mean or Tot
Category A. Riffles 3. Pools	Metric (per As-Built and reference baselines) 1. Present? 2. Armor stable (e.g. no displacement)? 3. Facet grades appears stable? 4. Minimal evidence of embedding/fining? 5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?) 3. Length appropriate? 1. Upstream of pool (structure) centering? (%)	(# Stable) Number Performing as Intended 4 4 4 4 4 4 4 5 5 5 5 5 5 100	per As-Built 4 4 4 4 4 4 5 5 5 5 100	/ feet in unstable state 0 0 0 0 0 0 0 0 0 0 0 0 0	in Stable Condition 100 100 100 100 100 100 100 100 100	Perfomance Mean or Tota 100%
Category A. Riffles 3. Pools	Metric (per As-Built and reference baselines) 1. Present? 2. Armor stable (e.g. no displacement)? 3. Facet grades appears stable? 4. Minimal evidence of embedding/fining? 5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?) 3. Length appropriate?	(# Stable) Number Performing as Intended 4 4 4 4 4 4 4 5 5 5 5 5 5	per As-Built 4 4 4 4 4 4 5 5 5 5 5	/ feet in unstable state 0 0 0 0 0 0 0 0 0 0	in Stable Condition 100 100 100 100 100 100 100	Perfomance Mean or Tota
Category A. Riffles B. Pools C. Thalweg	Metric (per As-Built and reference baselines) 1. Present? 2. Armor stable (e.g. no displacement)? 3. Facet grades appears stable? 4. Minimal evidence of embedding/fining? 5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?) 3. Length appropriate? 1. Upstream of pool (structure) centering? (%) 2. Downstream of pool (structure) centering? (%)	(# Stable) Number Performing as Intended 4 4 4 4 4 4 5 5 5 5 5 5 100 100	per As-Built 4 4 4 4 4 4 4 5 5 5 5 100 100 100	/ feet in unstable state 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	in Stable Condition 100 100 100 100 100 100 100 100 100 10	Perfomance Mean or Tot
Category A. Riffles B. Pools C. Thalweg	Metric (per As-Built and reference baselines) 1. Present? 2. Armor stable (e.g. no displacement)? 3. Facet grades appears stable? 4. Minimal evidence of embedding/fining? 5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?) 3. Length appropriate? 1. Upstream of pool (structure) centering? (%) 2. Downstream of pool (structure) centering? (%) 1. Outer bend in state of limited/controlled erosion?	(# Stable) Number Performing as Intended 4 4 4 4 4 4 5 5 5 5 5 5 5 5 100 100 100 100	per As-Built 4 4 4 4 4 4 4 5 5 5 5 100 100 100 N/A	/ feet in unstable state 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	in Stable Condition 100 100 100 100 100 100 100 100 100 10	Perfomance Mean or Tot
Category A. Riffles B. Pools C. Thalweg	Metric (per As-Built and reference baselines) 1. Present? 2. Armor stable (e.g. no displacement)? 3. Facet grades appears stable? 4. Minimal evidence of embedding/fining? 5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?) 3. Length appropriate? 1. Upstream of pool (structure) centering? (%) 2. Downstream of pool (structure) centering? (%) 1. Outer bend in state of limited/controlled erosion? 2. Of those eroding, # w/concomitant point bar formation?	(# Stable) Number Performing as Intended 4 4 4 4 4 4 4 5 5 5 5 5 5 5 100 100 100 100 100 100	per As-Built 4 4 4 4 4 4 4 5 5 5 5 100 100 N/A N/A	/ feet in unstable state 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	in Stable Condition 100 100 100 100 100 100 100 100 100 10	Perfomance Mean or Tota 100%
Category A. Riffles B. Pools C. Thalweg	Metric (per As-Built and reference baselines) 1. Present? 2. Armor stable (e.g. no displacement)? 3. Facet grades appears stable? 4. Minimal evidence of embedding/fining? 5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?) 3. Length appropriate? 1. Upstream of pool (structure) centering? (%) 2. Downstream of pool (structure) centering? (%) 1. Outer bend in state of limited/controlled erosion? 2. Of those eroding, # w/concomitant point bar formation? 3. Apparent Rc within spec?	(# Stable) Number Performing as Intended 4 4 4 4 4 4 4 5 5 5 5 5 5 5 100 100 100 100 100 100 1	per As-Built 4 4 4 4 4 4 4 4 5 5 5 5 100 100 N/A N/A N/A N/A	/ feet in unstable state 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	in Stable Condition 100 100 100 100 100 100 100 100 100 10	Perfomance Mean or Tota 100%
Category A. Riffles B. Pools C. Thalweg	Metric (per As-Built and reference baselines) 1. Present? 2. Armor stable (e.g. no displacement)? 3. Facet grades appears stable? 4. Minimal evidence of embedding/fining? 5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?) 3. Length appropriate? 1. Upstream of pool (structure) centering? (%) 2. Downstream of pool (structure) centering? (%) 1. Outer bend in state of limited/controlled erosion? 2. Of those eroding, # w/concomitant point bar formation?	(# Stable) Number Performing as Intended 4 4 4 4 4 4 4 5 5 5 5 5 5 5 100 100 100 100 100 100	per As-Built 4 4 4 4 4 4 4 5 5 5 5 100 100 N/A N/A	/ feet in unstable state 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	in Stable Condition 100 100 100 100 100 100 100 100 100 10	Perfomance Mean or Tota 100%
Category A. Riffles B. Pools C. Thalweg	Metric (per As-Built and reference baselines) 1. Present? 2. Armor stable (e.g. no displacement)? 3. Facet grades appears stable? 4. Minimal evidence of embedding/fining? 5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?) 3. Length appropriate? 1. Upstream of pool (structure) centering? (%) 2. Downstream of pool (structure) centering? (%) 1. Outer bend in state of limited/controlled erosion? 2. Of those eroding, # w/concomitant point bar formation? 3. Apparent Rc within spec? 4. Sufficient floodplain access and relief?	(# Stable) Number Performing as Intended 4 4 4 4 4 4 4 5 5 5 5 5 5 5 100 100 100 100 100 100 1	per As-Built 4 4 4 4 4 4 4 4 5 5 5 5 100 100 N/A N/A N/A N/A	/ feet in unstable state 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	in Stable Condition 100 100 100 100 100 100 100 100 100 10	Perfomance Mean or Tota 100%
Category A. Riffles B. Pools C. Thalweg D. Meanders	Metric (per As-Built and reference baselines) 1. Present? 2. Armor stable (e.g. no displacement)? 3. Facet grades appears stable? 4. Minimal evidence of embedding/fining? 5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?) 3. Length appropriate? 1. Upstream of pool (structure) centering? (%) 2. Downstream of pool (structure) centering? (%) 1. Outer bend in state of limited/controlled erosion? 2. Of those eroding, # w/concomitant point bar formation? 3. Apparent Rc within spec?	(# Stable) Number Performing as Intended 4 4 4 4 4 4 4 5 5 5 5 5 5 5 100 100 100 100 100 100 1	per As-Built 4 4 4 4 4 4 4 4 5 5 5 5 100 100 N/A N/A N/A N/A	/ feet in unstable state 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	in Stable Condition 100 100 100 100 100 100 100 100 100 10	Perfomance Mean or Tota 100%
Category A. Riffles B. Pools C. Thalweg D. Meanders E. Bed	Metric (per As-Built and reference baselines) 1. Present? 2. Armor stable (e.g. no displacement)? 3. Facet grades appears stable? 4. Minimal evidence of embedding/fining? 5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?) 3. Length appropriate? 1. Upstream of pool (structure) centering? (%) 2. Downstream of pool (structure) centering? (%) 1. Outer bend in state of limited/controlled erosion? 2. Of those eroding, # w/concomitant point bar formation? 3. Apparent Rc within spec? 4. Sufficient floodplain access and relief? 1. General channel bed aggradation areas (bar formation)	(# Stable) Number Performing as Intended 4 4 4 4 4 4 5 5 5 5 5 5 5 100 100 100 100 100 N/A N/A N/A N/A	per As-Built 4 4 4 4 4 4 4 5 5 5 5 100 100 100 N/A N/A N/A N/A N/A	/ feet in unstable state 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	in Stable Condition 100 100 100 100 100 100 100 100 100 10	Perfomance Mean or Tota 100%
Category A. Riffles B. Pools C. Thalweg D. Meanders E. Bed	Metric (per As-Built and reference baselines) 1. Present? 2. Armor stable (e.g. no displacement)? 3. Facet grades appears stable? 4. Minimal evidence of embedding/fining? 5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?) 3. Length appropriate? 1. Upstream of pool (structure) centering? (%) 2. Downstream of pool (structure) centering? (%) 1. Outer bend in state of limited/controlled erosion? 2. Of those eroding, # w/concomitant point bar formation? 3. Apparent Rc within spec? 4. Sufficient floodplain access and relief? 1. General channel bed aggradation areas (bar formation) 2. Channel bed degradation - areas of increasing down-	(# Stable) Number Performing as Intended 4 4 4 4 4 4 4 5 5 5 5 5 5 100 100 100 100 100 100 100	per As-Built 4 4 4 4 4 4 4 5 5 5 5 5 100 100 N/A N/A N/A N/A N/A 103	/ feet in unstable state 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	in Stable Condition 100 100 100 100 100 100 100 100 100 10	Perfomance Mean or Tota 100% 100%
Category A. Riffles B. Pools C. Thalweg D. Meanders E. Bed	Metric (per As-Built and reference baselines) 1. Present? 2. Armor stable (e.g. no displacement)? 3. Facet grades appears stable? 4. Minimal evidence of embedding/fining? 5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?) 3. Length appropriate? 1. Upstream of pool (structure) centering? (%) 2. Downstream of pool (structure) centering? (%) 1. Outer bend in state of limited/controlled erosion? 2. Of those eroding, # w/concomitant point bar formation? 3. Apparent Rc within spec? 4. Sufficient floodplain access and relief? 1. General channel bed aggradation areas (bar formation)	(# Stable) Number Performing as Intended 4 4 4 4 4 4 5 5 5 5 5 5 5 100 100 100 100 100 N/A N/A N/A N/A	per As-Built 4 4 4 4 4 4 4 5 5 5 5 100 100 100 N/A N/A N/A N/A N/A	/ feet in unstable state 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	in Stable Condition 100 100 100 100 100 100 100 100 100 10	Perfomance Mean or Tota 100%
Category A. Riffles B. Pools C. Thalweg D. Meanders E. Bed General	Metric (per As-Built and reference baselines) 1. Present? 2. Armor stable (e.g. no displacement)? 3. Facet grades appears stable? 4. Minimal evidence of embedding/fining? 5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?) 3. Length appropriate? 1. Upstream of pool (structure) centering? (%) 2. Downstream of pool (structure) centering? (%) 1. Outer bend in state of limited/controlled erosion? 2. Of those eroding, # w/concomitant point bar formation? 3. Apparent Rc within spec? 4. Sufficient floodplain access and relief? 1. General channel bed aggradation areas (bar formation) 2. Channel bed degradation - areas of increasing down-cutting or head cutting?	(# Stable) Number Performing as Intended 4 4 4 4 4 4 5 5 5 5 5 5 5 100 100 100 100 100 100 1	per As-Built 4 4 4 4 4 4 5 5 5 5 100 100 100 N/A N/A N/A N/A N/A 103 103	/ feet in unstable state 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	in Stable Condition 100 100 100 100 100 100 100 100 100 10	Perfomance Mean or Tot 100%
Category A. Riffles B. Pools C. Thalweg D. Meanders E. Bed General E. Bed	Metric (per As-Built and reference baselines) 1. Present? 2. Armor stable (e.g. no displacement)? 3. Facet grades appears stable? 4. Minimal evidence of embedding/fining? 5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?) 3. Length appropriate? 1. Upstream of pool (structure) centering? (%) 2. Downstream of pool (structure) centering? (%) 1. Outer bend in state of limited/controlled erosion? 2. Of those eroding, # w/concomitant point bar formation? 3. Apparent Rc within spec? 4. Sufficient floodplain access and relief? 1. General channel bed aggradation areas (bar formation) 2. Channel bed degradation - areas of increasing down-cutting or head cutting? 1. Free of back or arm scour?	(# Stable) Number Performing as Intended 4 4 4 4 4 4 4 5 5 5 5 5 5 5 100 100 100 100 100 100 1	per As-Built 4 4 4 4 4 4 4 5 5 5 5 100 100 100 N/A N/A N/A N/A N/A N/A 103 103 5	/ feet in unstable state 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	in Stable Condition 100 100 100 100 100 100 100 100 100 10	Perfomance Mean or Tot 100%
2 Ategory A. Riffles B. Pools B. Pools C. Thalweg D. Meanders C. Meanders E. Bed General E. Bed General	Metric (per As-Built and reference baselines) 1. Present? 2. Armor stable (e.g. no displacement)? 3. Facet grades appears stable? 4. Minimal evidence of embedding/fining? 5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?) 3. Length appropriate? 1. Upstream of pool (structure) centering? (%) 2. Downstream of pool (structure) centering? (%) 1. Outer bend in state of limited/controlled erosion? 2. Of those eroding, # w/concomitant point bar formation? 3. Apparent Rc within spec? 4. Sufficient floodplain access and relief? 1. General channel bed aggradation areas (bar formation) 2. Channel bed degradation - areas of increasing down-cutting or head cutting? 1. Free of back or arm scour? 2. Height appropriate?	(# Stable) Number Performing as Intended 4 4 4 4 4 4 5 5 5 5 5 5 5 100 100 100 100 100 100 1	per As-Built 4 4 4 4 4 4 4 4 5 5 5 5 5 100 100 100 N/A N/A N/A N/A N/A N/A 103 103 5 5 5	/ feet in unstable state 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	in Stable Condition 100 100 100 100 100 100 100 100 100 10	Perfomance Mean or Tot 100%
2 Ategory A. Riffles A. Riffles B. Pools B. Pools C. Thalweg D. Meanders C. Meanders E. Bed General E. Bed General E. Vanes, Rock/Log Drop	Metric (per As-Built and reference baselines) 1. Present? 2. Armor stable (e.g. no displacement)? 3. Facet grades appears stable? 4. Minimal evidence of embedding/fining? 5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?) 3. Length appropriate? 1. Upstream of pool (structure) centering? (%) 2. Downstream of pool (structure) centering? (%) 2. Of those eroding, # w/concomitant point bar formation? 3. Apparent Rc within spec? 4. Sufficient floodplain access and relief? 1. General channel bed aggradation areas (bar formation) 2. Channel bed degradation - areas of increasing down-cutting or head cutting? 1. Free of back or arm scour? 2. Height appropriate?	(# Stable) Number Performing as Intended 4 4 4 4 4 5 5 5 5 5 5 5 100 100 100 100 100 100 1	per As-Built 4 4 4 4 4 4 4 4 5 5 5 5 100 100 100 N/A N/A N/A N/A N/A N/A 103 103 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	/ feet in unstable state 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	in Stable Condition 100 100 100 100 100 100 100 100 100 10	Perfomance Mean or Tot
2 A Riffles A. Riffles B. Pools C. Thalweg D. Meanders E. Bed General E. Vanes, Rock/Log Drop	Metric (per As-Built and reference baselines) 1. Present? 2. Armor stable (e.g. no displacement)? 3. Facet grades appears stable? 4. Minimal evidence of embedding/fining? 5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?) 3. Length appropriate? 1. Upstream of pool (structure) centering? (%) 2. Downstream of pool (structure) centering? (%) 1. Outer bend in state of limited/controlled erosion? 2. Of those eroding, # w/concomitant point bar formation? 3. Apparent Rc within spec? 4. Sufficient floodplain access and relief? 1. General channel bed aggradation areas (bar formation) 2. Channel bed degradation - areas of increasing down-cutting or head cutting? 1. Free of back or arm scour? 2. Height appropriate?	(# Stable) Number Performing as Intended 4 4 4 4 4 4 5 5 5 5 5 5 5 100 100 100 100 100 100 1	per As-Built 4 4 4 4 4 4 4 4 5 5 5 5 5 100 100 100 N/A N/A N/A N/A N/A N/A 103 103 5 5 5	/ feet in unstable state 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	in Stable Condition 100 100 100 100 100 100 100 100 100 10	Perfomance Mean or Tota 100% 100%
Category A. Riffles A. Riffles B. Pools C. Thalweg D. Meanders E. Bed General E. Bed General F. Vanes, Rock/Log Drop Structures	Metric (per As-Built and reference baselines) 1. Present? 2. Armor stable (e.g. no displacement)? 3. Facet grades appears stable? 4. Minimal evidence of embedding/fining? 5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?) 3. Length appropriate? 1. Upstream of pool (structure) centering? (%) 2. Downstream of pool (structure) centering? (%) 1. Outer bend in state of limited/controlled erosion? 2. Of those eroding, # w/concomitant point bar formation? 3. Apparent Rc within spec? 4. Sufficient floodplain access and relief? 1. General channel bed aggradation areas (bar formation) 2. Channel bed degradation - areas of increasing down-cutting or head cutting? 1. Free of back or arm scour? 2. Height appropriate? 3. Angle and geometry appear appropriate? 4. Free of piping or other structural failures?	(# Stable) Number Performing as Intended 4 4 4 4 4 4 5 5 5 5 5 5 100 100 100 100 100 100 100	per As-Built 4 4 4 4 4 4 4 4 4 4 1 1 5 5 5 5 1 100 100 100 100 100 100 1	/ feet in unstable state 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	in Stable Condition 100 100 100 100 100 100 100 100 100 10	Perfomance Mean or Tot
Category	Metric (per As-Built and reference baselines) 1. Present? 2. Armor stable (e.g. no displacement)? 3. Facet grades appears stable? 4. Minimal evidence of embedding/fining? 5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?) 3. Length appropriate? 1. Upstream of pool (structure) centering? (%) 2. Downstream of pool (structure) centering? (%) 2. Of those eroding, # w/concomitant point bar formation? 3. Apparent Rc within spec? 4. Sufficient floodplain access and relief? 1. General channel bed aggradation areas (bar formation) 2. Channel bed degradation - areas of increasing down-cutting or head cutting? 1. Free of back or arm scour? 2. Height appropriate?	(# Stable) Number Performing as Intended 4 4 4 4 4 5 5 5 5 5 5 5 100 100 100 100 100 100 1	per As-Built 4 4 4 4 4 4 4 4 5 5 5 5 100 100 100 N/A N/A N/A N/A N/A N/A 103 103 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	/ feet in unstable state 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	in Stable Condition 100 100 100 100 100 100 100 100 100 10	Perfomance Mean or Tot 100%

	Creek Restoration Project: DMS Project ID No. 94645	ch 2 (207 LF)				
	012,100		1	[
Feature Category	Metric (per As-Built and reference baselines)	(# Stable) Number Performing as Intended	Total number per As-Built	Total Number / feet in unstable state	% Performing in Stable Condition	Feature Perfomance Mean or Tota
A. Riffles	1. Present?	4	4	0	100	
	2. Armor stable (e.g. no displacement)?	4	4	0	100	
	3. Facet grades appears stable?	4	4	0	100	
	4. Minimal evidence of embedding/fining?	4	4	0	100	
	5. Length appropriate?	4	4	0	100	100%
3. Pools	4. Descent() (a. a. act subject to serve a serve define an action ()		<u> </u>		100	
5. P0015	 Present? (e.g. not subject to severe aggradation or migration?) Sufficiently deep (Max Pool D:Mean Bkf >1.6?) 	3	3	0	100 100	
	3. Length appropriate?	3	3	0	100	100%
C. Thalweg	1. Upstream of pool (structure) centering? (%)	100	100	0	100	
	2. Downstream of pool (structure) centering? (%)	100	100	0	100	100%
D. Meanders	1. Outer bend in state of limited/controlled erosion?	3	3	0	100	
	2. Of those eroding, # w/concomitant point bar formation?	3	3	0	100	
	3. Apparent Rc within spec?4. Sufficient floodplain access and relief?	3	3	0	100 100	100%
		3	3	0	100	10070
E. Bed	1. General channel bed aggradation areas (bar formation)	207	207	0	100	
General	2. Channel bed degradation - areas of increasing down-			-		
	cutting or head cutting?	207	207	0	100	100%
Vanes,	1. Free of back or arm scour?	1	1	0	100	
Rock/Log Drop	2. Height appropriate?	1	1	0	100	
Structures	3. Angle and geometry appear appropriate?4. Free of piping or other structural failures?	1	1	0	100 100	100%
		I	1	0	100	100 /8
		N1/A	N1/A	N1/A	N/A	
G. Wads/	1. Free of scour?	N/A	N/A	N/A	IN/A	
Boulders Fable 8. Visua	2. Footing stable? al Morphological Stability Assessment - Continued Creek Restoration Project: DMS Project ID No. 94645	N/A N/A	N/A	N/A N/A	N/A N/A	N/A
Boulders Fable 8. Visua	2. Footing stable? al Morphological Stability Assessment - Continued Creek Restoration Project: DMS Project ID No. 94645	N/A	N/A			N/A
Boulders Table 8. Visua Upper Silver (2. Footing stable? al Morphological Stability Assessment - Continued Creek Restoration Project: DMS Project ID No. 94645	N/A) (Enhancement II read	N/A	N/A Total Number	N/A % Performing	Feature
Boulders Table 8. Visua Upper Silver (Feature	2. Footing stable? al Morphological Stability Assessment - Continued Creek Restoration Project: DMS Project ID No. 94645 UT3 Reach 1 (343 LF	N/A) (Enhancement II read (# Stable) Number Performing	N/A	N/A Total Number / feet in unstable	N/A % Performing in Stable	Feature Perfomance
Boulders Fable 8. Visua Jpper Silver (Feature Category	2. Footing stable? al Morphological Stability Assessment - Continued Creek Restoration Project: DMS Project ID No. 94645 UT3 Reach 1 (343 LF Metric (per As-Built and reference baselines)	N/A) (Enhancement II read (# Stable) Number Performing as Intended	N/A ch) Total number per As-Built	N/A Total Number / feet in unstable state	N/A % Performing in Stable Condition	Feature Perfomance
Boulders Fable 8. Visua Jpper Silver (Feature Category	2. Footing stable? al Morphological Stability Assessment - Continued Creek Restoration Project: DMS Project ID No. 94645 UT3 Reach 1 (343 LF UT3 Reach 1 (343 LF Metric (per As-Built and reference baselines) 1. Present?	N/A) (Enhancement II read (# Stable) Number Performing as Intended N/A	N/A Total number per As-Built N/A	N/A Total Number / feet in unstable state N/A	N/A % Performing in Stable Condition N/A	Feature Perfomance
Boulders Table 8. Visua Upper Silver (Feature Category	2. Footing stable? al Morphological Stability Assessment - Continued Creek Restoration Project: DMS Project ID No. 94645 UT3 Reach 1 (343 LF Metric (per As-Built and reference baselines) 1. Present? 2. Armor stable (e.g. no displacement)?	N/A) (Enhancement II read (# Stable) Number Performing as Intended N/A N/A	N/A Total number per As-Built N/A N/A	N/A Total Number / feet in unstable state N/A N/A	N/A % Performing in Stable Condition N/A N/A	Feature Perfomance
Boulders Fable 8. Visua Jpper Silver (Feature Category	2. Footing stable? al Morphological Stability Assessment - Continued Creek Restoration Project: DMS Project ID No. 94645 UT3 Reach 1 (343 LF UT3 Reach 1 (343 LF Interference baselines) 1. Present? 2. Armor stable (e.g. no displacement)? 3. Facet grades appears stable?	N/A) (Enhancement II read (# Stable) Number Performing as Intended N/A N/A N/A	N/A Total number per As-Built N/A N/A N/A	N/A Total Number / feet in unstable state N/A N/A N/A	N/A % Performing in Stable Condition N/A N/A N/A	Feature Perfomance
Boulders Fable 8. Visua Jpper Silver (Feature Category	2. Footing stable? al Morphological Stability Assessment - Continued Creek Restoration Project: DMS Project ID No. 94645 UT3 Reach 1 (343 LF Metric (per As-Built and reference baselines) 1. Present? 2. Armor stable (e.g. no displacement)?	N/A) (Enhancement II read (# Stable) Number Performing as Intended N/A N/A	N/A Total number per As-Built N/A N/A	N/A Total Number / feet in unstable state N/A N/A	N/A % Performing in Stable Condition N/A N/A	Feature Perfomance
Boulders Fable 8. Visua Jpper Silver (Feature Category A. Riffles	2. Footing stable? al Morphological Stability Assessment - Continued Creek Restoration Project: DMS Project ID No. 94645 UT3 Reach 1 (343 LF UT3 Reach 1 (343 LF 1. Present? 2. Armor stable (e.g. no displacement)? 3. Facet grades appears stable? 4. Minimal evidence of embedding/fining? 5. Length appropriate?	N/A) (Enhancement II read (# Stable) Number Performing as Intended N/A N/A N/A N/A N/A N/A N/A	N/A Total number per As-Built N/A N/A N/A N/A N/A	N/A Total Number / feet in unstable state N/A N/A N/A N/A N/A	N/A % Performing in Stable Condition N/A N/A N/A N/A N/A	Feature Perfomance Mean or Tota
Boulders Fable 8. Visua Jpper Silver (Feature Category A. Riffles	 2. Footing stable? al Morphological Stability Assessment - Continued Creek Restoration Project: DMS Project ID No. 94645 UT3 Reach 1 (343 LF Metric (per As-Built and reference baselines) 1. Present? 2. Armor stable (e.g. no displacement)? 3. Facet grades appears stable? 4. Minimal evidence of embedding/fining? 5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 	N/A) (Enhancement II read (# Stable) Number Performing as Intended N/A	N/A Total number per As-Built N/A N/A N/A N/A N/A N/A	N/A Total Number / feet in unstable state N/A N/A N/A N/A N/A N/A N/A	N/A % Performing in Stable Condition N/A N/A N/A N/A N/A N/A N/A	Feature Perfomance Mean or Tota
Boulders Fable 8. Visua Jpper Silver (Feature Category A. Riffles	 2. Footing stable? al Morphological Stability Assessment - Continued Creek Restoration Project: DMS Project ID No. 94645 UT3 Reach 1 (343 LF Metric (per As-Built and reference baselines) 1. Present? 2. Armor stable (e.g. no displacement)? 3. Facet grades appears stable? 4. Minimal evidence of embedding/fining? 5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?) 	N/A) (Enhancement II read (# Stable) Number Performing as Intended N/A	N/A Total number per As-Built N/A N/A N/A N/A N/A N/A N/A	N/A Total Number / feet in unstable state N/A N/A N/A N/A N/A N/A N/A	N/A % Performing in Stable Condition N/A N/A N/A N/A N/A N/A N/A	Feature Perfomance Mean or Tota
Boulders Table 8. Visua	 2. Footing stable? al Morphological Stability Assessment - Continued Creek Restoration Project: DMS Project ID No. 94645 UT3 Reach 1 (343 LF Metric (per As-Built and reference baselines) 1. Present? 2. Armor stable (e.g. no displacement)? 3. Facet grades appears stable? 4. Minimal evidence of embedding/fining? 5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 	N/A) (Enhancement II read (# Stable) Number Performing as Intended N/A	N/A Total number per As-Built N/A N/A N/A N/A N/A N/A	N/A Total Number / feet in unstable state N/A N/A N/A N/A N/A N/A N/A	N/A % Performing in Stable Condition N/A N/A N/A N/A N/A N/A N/A	Feature Perfomance Mean or Tota
Boulders Fable 8. Visua Jpper Silver (Eeature Category A. Riffles B. Pools	 2. Footing stable? al Morphological Stability Assessment - Continued Creek Restoration Project: DMS Project ID No. 94645 UT3 Reach 1 (343 LF Metric (per As-Built and reference baselines) 1. Present? 2. Armor stable (e.g. no displacement)? 3. Facet grades appears stable? 4. Minimal evidence of embedding/fining? 5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?) 3. Length appropriate? 	N/A) (Enhancement II reading (# Stable) Number Performing as Intended N/A	N/A Total number per As-Built N/A N/A N/A N/A N/A N/A N/A N/A	N/A Total Number / feet in unstable state N/A N/A N/A N/A N/A N/A N/A N/A	N/A % Performing in Stable Condition N/A N/A N/A N/A N/A N/A N/A N/A	Feature Perfomance Mean or Tota
Boulders Fable 8. Visua Jpper Silver (Eeature Category A. Riffles B. Pools	2. Footing stable? al Morphological Stability Assessment - Continued Creek Restoration Project: DMS Project ID No. 94645 UT3 Reach 1 (343 LF UT3 Reach 1 (343 LF Metric (per As-Built and reference baselines) 1. Present? 2. Armor stable (e.g. no displacement)? 3. Facet grades appears stable? 4. Minimal evidence of embedding/fining? 5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?) 3. Length appropriate? 1. Upstream of pool (structure) centering? (%)	N/A) (Enhancement II read (# Stable) Number Performing as Intended N/A	N/A Total number per As-Built N/A N/A N/A N/A N/A N/A N/A	N/A Total Number / feet in unstable state N/A N/A N/A N/A N/A N/A N/A	N/A % Performing in Stable Condition N/A N/A N/A N/A N/A N/A N/A	Feature Perfomance Mean or Tota
Boulders Fable 8. Visua Jpper Silver (Eeature Category A. Riffles B. Pools	 2. Footing stable? al Morphological Stability Assessment - Continued Creek Restoration Project: DMS Project ID No. 94645 UT3 Reach 1 (343 LF Metric (per As-Built and reference baselines) 1. Present? 2. Armor stable (e.g. no displacement)? 3. Facet grades appears stable? 4. Minimal evidence of embedding/fining? 5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?) 3. Length appropriate? 	N/A) (Enhancement II reading (# Stable) Number Performing as Intended N/A	N/A Total number per As-Built N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A Total Number / feet in unstable state N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A % Performing in Stable Condition N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	Feature Perfomance Mean or Tota
Boulders Fable 8. Visua Jpper Silver (eature Category A. Riffles	 2. Footing stable? al Morphological Stability Assessment - Continued Creek Restoration Project: DMS Project ID No. 94645 UT3 Reach 1 (343 LF Wetric (per As-Built and reference baselines) 1. Present? 2. Armor stable (e.g. no displacement)? 3. Facet grades appears stable? 4. Minimal evidence of embedding/fining? 5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?) 3. Length appropriate? 1. Upstream of pool (structure) centering? (%) 2. Downstream of pool (structure) centering? (%) 1. Outer bend in state of limited/controlled erosion? 	N/A) (Enhancement II reading (# Stable) Number Performing as Intended N/A	N/A Total number per As-Built N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A Total Number / feet in unstable state N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A % Performing in Stable Condition N/A	Feature Perfomance Mean or Tota
Boulders Table 8. Visua Jpper Silver (Feature Category A. Riffles B. Pools C. Thalweg	 2. Footing stable? al Morphological Stability Assessment - Continued Creek Restoration Project: DMS Project ID No. 94645 UT3 Reach 1 (343 LF Wetric (per As-Built and reference baselines) 1. Present? 2. Armor stable (e.g. no displacement)? 3. Facet grades appears stable? 4. Minimal evidence of embedding/fining? 5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?) 3. Length appropriate? 1. Upstream of pool (structure) centering? (%) 2. Downstream of pool (structure) centering? (%) 1. Outer bend in state of limited/controlled erosion? 2. Of those eroding, # w/concomitant point bar formation? 	N/A) (Enhancement II reading (# Stable) Number Performing as Intended N/A	N/A Total number per As-Built N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A Total Number / feet in unstable state N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A % Performing in Stable Condition N/A	Feature Perfomance Mean or Tota
Boulders Table 8. Visua Jpper Silver (Feature Category A. Riffles B. Pools C. Thalweg	 2. Footing stable? al Morphological Stability Assessment - Continued Creek Restoration Project: DMS Project ID No. 94645 UT3 Reach 1 (343 LF Wetric (per As-Built and reference baselines) 1. Present? 2. Armor stable (e.g. no displacement)? 3. Facet grades appears stable? 4. Minimal evidence of embedding/fining? 5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?) 3. Length appropriate? 1. Upstream of pool (structure) centering? (%) 2. Downstream of pool (structure) centering? (%) 2. Of those eroding, # w/concomitant point bar formation? 3. Apparent Rc within spec? 	N/A) (Enhancement II reading (# Stable) Number Performing as Intended N/A	N/A Total number per As-Built N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A Total Number / feet in unstable state N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A % Performing in Stable Condition N/A	Feature Perfomance Mean or Tota N/A
Boulders Table 8. Visua Jpper Silver (Feature Category A. Riffles B. Pools C. Thalweg	 2. Footing stable? al Morphological Stability Assessment - Continued Creek Restoration Project: DMS Project ID No. 94645 UT3 Reach 1 (343 LF Wetric (per As-Built and reference baselines) 1. Present? 2. Armor stable (e.g. no displacement)? 3. Facet grades appears stable? 4. Minimal evidence of embedding/fining? 5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?) 3. Length appropriate? 1. Upstream of pool (structure) centering? (%) 2. Downstream of pool (structure) centering? (%) 1. Outer bend in state of limited/controlled erosion? 2. Of those eroding, # w/concomitant point bar formation? 	N/A) (Enhancement II reading (# Stable) Number Performing as Intended N/A	N/A Total number per As-Built N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A Total Number / feet in unstable state N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A % Performing in Stable Condition N/A	Feature Perfomance Mean or Tota N/A
Boulders Fable 8. Visua Jpper Silver (Feature Category A. Riffles B. Pools C. Thalweg D. Meanders	 2. Footing stable? al Morphological Stability Assessment - Continued Creek Restoration Project: DMS Project ID No. 94645 UT3 Reach 1 (343 LF Wetric (per As-Built and reference baselines) 1. Present? 2. Armor stable (e.g. no displacement)? 3. Facet grades appears stable? 4. Minimal evidence of embedding/fining? 5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?) 3. Length appropriate? 1. Upstream of pool (structure) centering? (%) 2. Downstream of pool (structure) centering? (%) 2. Of those eroding, # w/concomitant point bar formation? 3. Apparent Rc within spec? 4. Sufficient floodplain access and relief? 	N/A) (Enhancement II reading (# Stable) Number Performing as Intended N/A	N/A Total number per As-Built N/A N/A N/A N/A N/A N/A N/A N/A	N/A Total Number / feet in unstable state N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A % Performing in Stable Condition N/A	Feature Perfomance Mean or Tota N/A
Boulders Table 8. Visua Jpper Silver (Feature Category A. Riffles B. Pools C. Thalweg	 2. Footing stable? al Morphological Stability Assessment - Continued Creek Restoration Project: DMS Project ID No. 94645 UT3 Reach 1 (343 LF Metric (per As-Built and reference baselines) 1. Present? 2. Armor stable (e.g. no displacement)? 3. Facet grades appears stable? 4. Minimal evidence of embedding/fining? 5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?) 3. Length appropriate? 1. Upstream of pool (structure) centering? (%) 2. Downstream of pool (structure) centering? (%) 2. Of those eroding, # w/concomitant point bar formation? 3. Apparent Rc within spec? 4. Sufficient floodplain access and relief? 1. General channel bed aggradation areas (bar formation) 2. Channel bed degradation - areas of increasing down- 	N/A) (Enhancement II read (# Stable) Number Performing as Intended N/A	N/A Total number per As-Built N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A Total Number / feet in unstable state N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A % Performing in Stable Condition N/A	Feature Perfomance Mean or Tota
Boulders Fable 8. Visua Jpper Silver (Feature Category A. Riffles B. Pools C. Thalweg D. Meanders E. Bed	 2. Footing stable? al Morphological Stability Assessment - Continued Creek Restoration Project: DMS Project ID No. 94645 UT3 Reach 1 (343 LF Wetric (per As-Built and reference baselines) 1. Present? 2. Armor stable (e.g. no displacement)? 3. Facet grades appears stable? 4. Minimal evidence of embedding/fining? 5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?) 3. Length appropriate? 1. Upstream of pool (structure) centering? (%) 2. Downstream of pool (structure) centering? (%) 2. Of those eroding, # w/concomitant point bar formation? 3. Apparent Rc within spec? 4. Sufficient floodplain access and relief? 1. General channel bed aggradation areas (bar formation) 	N/A) (Enhancement II reading (# Stable) Number Performing as Intended N/A	N/A Total number per As-Built N/A N/A N/A N/A N/A N/A N/A N/A	N/A Total Number / feet in unstable state N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A % Performing in Stable Condition N/A	Feature Perfomance Mean or Tota N/A
Boulders Table 8. Visua Jpper Silver (Category A. Riffles B. Pools C. Thalweg D. Meanders E. Bed General	 2. Footing stable? al Morphological Stability Assessment - Continued Creek Restoration Project: DMS Project ID No. 94645 UT3 Reach 1 (343 LF Metric (per As-Built and reference baselines) 1. Present? 2. Armor stable (e.g. no displacement)? 3. Facet grades appears stable? 4. Minimal evidence of embedding/fining? 5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?) 3. Length appropriate? 1. Upstream of pool (structure) centering? (%) 2. Downstream of pool (structure) centering? (%) 2. Of those eroding, # w/concomitant point bar formation? 3. Apparent Rc within spec? 4. Sufficient floodplain access and relief? 1. General channel bed aggradation areas (bar formation) 2. Channel bed degradation - areas of increasing down-cutting or head cutting? 	N/A) (Enhancement II reading (# Stable) Number Performing as Intended N/A N/A <	N/A Total number per As-Built N/A N/A N/A N/A N/A N/A N/A N/A	N/A Total Number / feet in unstable state N/A N/A N/A N/A N/A N/A N/A N/A	N/A % Performing in Stable Condition N/A 100 100	Feature Perfomance Mean or Tota
Boulders Table 8. Visua Jpper Silver (Feature Category A. Riffles B. Pools C. Thalweg D. Meanders E. Bed General F. Vanes,	 2. Footing stable? al Morphological Stability Assessment - Continued Creek Restoration Project: DMS Project ID No. 94645 UT3 Reach 1 (343 LF Metric (per As-Built and reference baselines) 1. Present? 2. Armor stable (e.g. no displacement)? 3. Facet grades appears stable? 4. Minimal evidence of embedding/fining? 5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?) 3. Length appropriate? 1. Upstream of pool (structure) centering? (%) 2. Downstream of pool (structure) centering? (%) 2. Of those eroding, # w/concomitant point bar formation? 3. Apparent Rc within spec? 4. Sufficient floodplain access and relief? 1. General channel bed aggradation areas (bar formation) 2. Channel bed degradation - areas of increasing downcutting or head cutting? 1. Free of back or arm scour? 	N/A) (Enhancement II reading a series of the ser	N/ATotal number per As-BuiltN/A3433433	N/A Total Number / feet in unstable state N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A % Performing in Stable Condition N/A	Feature Perfomance Mean or Tota
Boulders Fable 8. Visua Jpper Silver (Feature Category A. Riffles B. Pools C. Thalweg D. Meanders E. Bed General F. Vanes, Rock/Log	 2. Footing stable? al Morphological Stability Assessment - Continued Creek Restoration Project: DMS Project ID No. 94645 UT3 Reach 1 (343 LF Wetric (per As-Built and reference baselines) 1. Present? 2. Armor stable (e.g. no displacement)? 3. Facet grades appears stable? 4. Minimal evidence of embedding/fining? 5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?) 3. Length appropriate? 1. Upstream of pool (structure) centering? (%) 2. Downstream of pool (structure) centering? (%) 2. Of those eroding, # w/concomitant point bar formation? 3. Apparent Rc within spec? 4. Sufficient floodplain access and relief? 1. General channel bed aggradation areas (bar formation) 2. Channel bed degradation - areas of increasing down-cutting or head cutting? 1. Free of back or arm scour? 2. Height appropriate? 	N/A) (Enhancement II reading a series of the ser	N/A Total number per As-Built N/A N/A N/A N/A N/A N/A N/A N/A	N/A Total Number / feet in unstable state N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A % Performing in Stable Condition N/A	Feature Perfomance Mean or Tota
Boulders Table 8. Visua Jpper Silver 0 Feature Category A. Riffles B. Pools C. Thalweg D. Meanders E. Bed	2. Footing stable? al Morphological Stability Assessment - Continued Creek Restoration Project: DMS Project ID No. 94645 UT3 Reach 1 (343 LF Uta 1 (345 LF Uta	N/A) (Enhancement II reading a service of the	N/A Total number per As-Built N/A N/A N/A N/A N/A N/A N/A N/A	N/A Total Number / feet in unstable state N/A N/A N/A N/A N/A N/A N/A N/A	N/A % Performing in Stable Condition N/A 100 100 100 100 100 100 100 100	Feature Perfomance Mean or Tota N/A N/A N/A
Boulders Table 8. Visua Jpper Silver (Feature Category A. Riffles B. Pools C. Thalweg D. Meanders E. Bed General F. Vanes, Rock/Log Drop	 2. Footing stable? al Morphological Stability Assessment - Continued Creek Restoration Project: DMS Project ID No. 94645 UT3 Reach 1 (343 LF Wetric (per As-Built and reference baselines) 1. Present? 2. Armor stable (e.g. no displacement)? 3. Facet grades appears stable? 4. Minimal evidence of embedding/fining? 5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?) 3. Length appropriate? 1. Upstream of pool (structure) centering? (%) 2. Downstream of pool (structure) centering? (%) 2. Of those eroding, # w/concomitant point bar formation? 3. Apparent Rc within spec? 4. Sufficient floodplain access and relief? 1. General channel bed aggradation areas (bar formation) 2. Channel bed degradation - areas of increasing down-cutting or head cutting? 1. Free of back or arm scour? 2. Height appropriate? 	N/A) (Enhancement II reading a series of the ser	N/A Total number per As-Built N/A N/A N/A N/A N/A N/A N/A N/A	N/A Total Number / feet in unstable state N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A % Performing in Stable Condition N/A	Feature Perfomance Mean or Tota
Boulders Fable 8. Visua Jpper Silver (Feature Category A. Riffles B. Pools C. Thalweg D. Meanders E. Bed General F. Vanes, Rock/Log Drop	2. Footing stable? al Morphological Stability Assessment - Continued Creek Restoration Project: DMS Project ID No. 94645 UT3 Reach 1 (343 LF Uta 1 (345 LF Uta	N/A) (Enhancement II reading a service of the	N/A Total number per As-Built N/A N/A N/A N/A N/A N/A N/A N/A	N/A Total Number / feet in unstable state N/A N/A N/A N/A N/A N/A N/A N/A	N/A% Performing in Stable ConditionN/AN/AN/AN/AN/AN/AN/AN/AN/AN/AN/AN/AN/AN/AN/AN/A100100100100100100100	Feature Perfomance Mean or Tota N/A N/A N/A N/A

	UT3 Rea	ch 2 (1,022 LF)	1	-		
Feature Category	Metric (per As-Built and reference baselines)	(# Stable) Number Performing as Intended	Total number per As-Built	Total Number / feet in unstable state	% Performing in Stable Condition	Feature Perfomance Mean or Total
A. Riffles	1. Present?	22	22	0	100	
	2. Armor stable (e.g. no displacement)?	22	22	0	100	
	3. Facet grades appears stable?	22	22	0	100	
	4. Minimal evidence of embedding/fining?	22	22	0	100	
	5. Length appropriate?	22	22	0	100	100%
B. Pools	1. Present? (e.g. not subject to severe aggradation or migration?)	21	21	0	100	
	2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?)	21	21	0	100	
	3. Length appropriate?	21	21	0	100	100%
C. Thalweg	1. Upstream of pool (structure) centering?	100	100	0	100	
	2. Downstream of pool (structure) centering?	100	100	0	100	100%
D. Meanders	1. Outer bend in state of limited/controlled erosion?	17	17	0	100	
	2. Of those eroding, # w/concomitant point bar formation?	17	17	0	100	
	3. Apparent Rc within spec?	17	17	0	100	
	4. Sufficient floodplain access and relief?	17	17	0	100	100%
E. Bed	1. General channel bed aggradation areas (bar formation)	1,022	1,022	0	100	
General	2. Channel bed degradation - areas of increasing down- cutting or head cutting?	1,022	1,022	0	100	100%
F. Vanes,	1. Free of back or arm scour?	15	15	0	100	
Rock/Log	2. Height appropriate?	15	15	0	100	
Drop	3. Angle and geometry appear appropriate?	15	15	0	100	
Structures	4. Free of piping or other structural failures?	15	15	0	100	100%
G. Wads/	1. Free of scour?	4	4	0	100	
Boulders	2. Footing stable?	4	4	0	100	100%

Date of Data	Approximate Date of	Method of Data	Gauge Watermark	Height (inches) ¹
Collection	Event	Collection	Silver Creek Station 19+00	UT3 Station 8+10
		МУ	· · · · · · · · · · · · · · · · · · ·	
2/29/2016	Unknown	Crest gauge	15.0	5.0
		МУ	/3	
5/2/2017	Unknown	Crest Gauge	5.4	3.0
	•	МУ	4	
4/2/2018	2/11/2018	Crest Gauge	14.28	0 2
5/8/2018	4/15/2018	Crest Gauge	12.96	0 2
10/3/2018	9/16/2018	Crest Gauge	10.56	0 2
10/18/2018	10/11/2018	Crest Gauge	19.68	0 ²

¹Height indicates the highest position of cork shavings on the dowel and the height above bankfull, as 0" on the dowel is set at bankfull

 2 Crest gauge along UT3 was impacted by an ant hill and did not record a bankful event. The crest gauge was cleaned out repeatedly and refilled with cork in 2018 but the ant hill was rebuilt from cork from the crest gauge, so the events documented on 5/8/2018, 10/3/2018, and 10/18/2018 were not recorded. The crest gauge was cleaned out again in November 2018 after the ants left for the winter. They will be treated and eradicated if they return in spring.

Photo 1. Silver Creek mainstem crest gauge staff showing cork deposition in red circle at 1.19' above the bottom of the staff, which is at the bankfull elevation (4/2/2018)

Photo 2. Silver Creek mainstem crest gauge staff showing cork deposition in red circle at 1.19' above the bottom of the staff, which is at the bankfull elevation (4/2/2018)

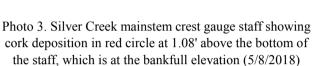


Photo 4. Silver Creek mainstem crest gauge staff showing cork deposition in red circle at 1.08' above the bottom of the staff, which is at the bankfull elevation (5/8/2018)

Photo 5. Silver Creek mainstem crest gauge staff showing cork deposition in red circle at 0.88' above the bottom of the staff, which is at the bankfull elevation (10/3/2018)

Photo 6. Silver Creek mainstem crest gauge staff showing cork deposition in red circle at 0.88' above the bottom of the staff, which is at the bankfull elevation (10/3/2018)

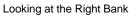
Photo 7. Silver Creek mainstem crest gauge staff showing cork deposition in red circle at 1.64' above the bottom of the staff, which is at the bankfull elevation (10/18/2018)

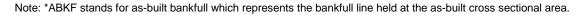

Photo 8. Silver Creek mainstem crest gauge staff showing cork deposition in red circle at 1.64' above the bottom of the staff, which is at the bankfull elevation (10/18/2018)

Figure 6. Cross-sections with Annual Overlays

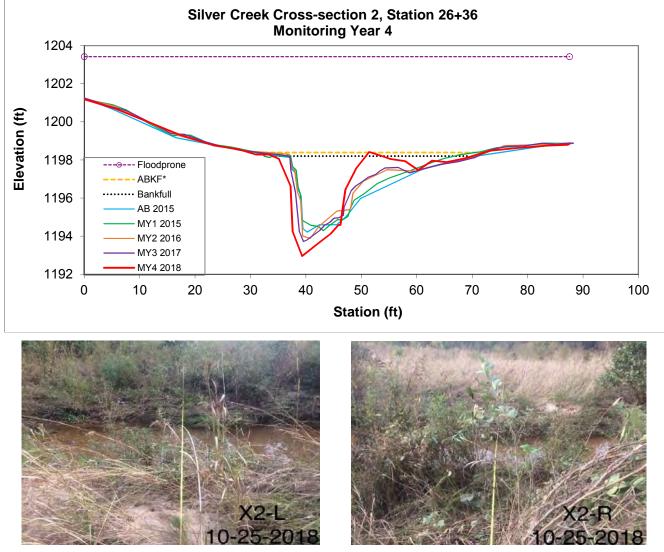
Permanent Cross-section 1 (MY4 Data - collected October, 2018)

Based on fixed baseline BKF


	Stream		BKF	BKF	Max BKF						Low TOB
Feature	Туре	BKF Area	Width	Depth	Depth	W/D	BH Ratio	ER	BKF Elev	TOB Elev	Depth
Riffle	С	38.27	20.28	1.89	3.39	10.73	1.00	4.87	1197.38	1197.73	3.74



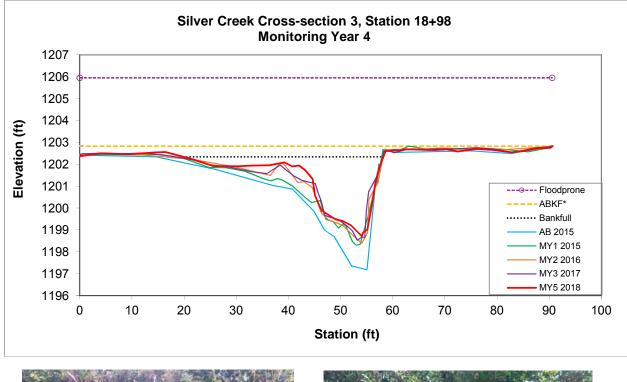
Looking at the Left Bank



Permanent Cross-section 2 (MY4 Data - collected October, 2018)

Based on fixed baseline BKF

Feature	Stream Type	BKF Area	BKF Width	BKF Depth	Max BKF Depth	W/D	BH Ratio	ER	BKF Elev	TOB Elev	Low TOB Depth
Pool	-	51.28	33.02	1.55	5.24	21.30	0.98	2.67	1198.20	1198.28	5.32

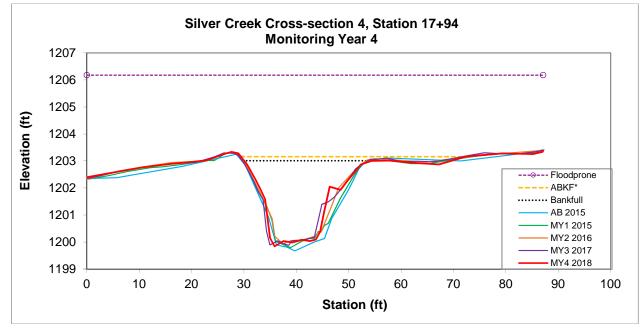

Looking at the Left Bank

Looking at the Right Bank

Note: *ABKF stands for as-built bankfull which represents the bankfull line held at the as-built cross sectional area.

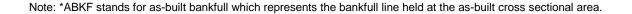
Permanent Cross-section 3 (MY Data - collected October, 2018)

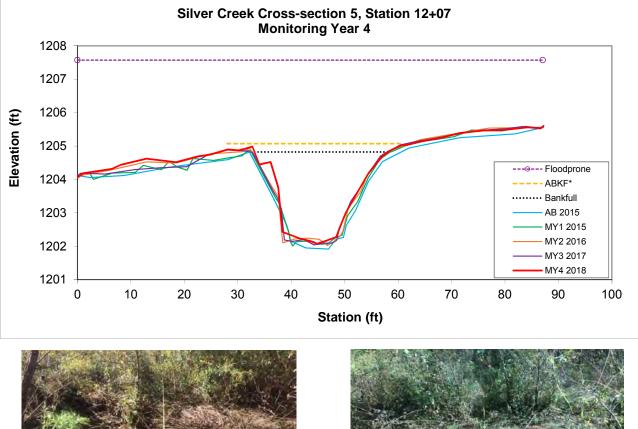
Based on	Based on fixed baseline BKF													
	Stream		BKF	BKF	Max BKF						Low TOB			
Feature	Туре	BKF Area	Width	Depth	Depth	W/D	BH Ratio	ER	BKF Elev	TOB Elev	Depth			
Pool	-	43.51	38.31	1.14	3.61	33.61	0.93	2.36	1202.34	1202.56	3.83			


Looking at the Left Bank

Looking at the Right Bank

(MY4 Data - collected Oct0ber, 2018)

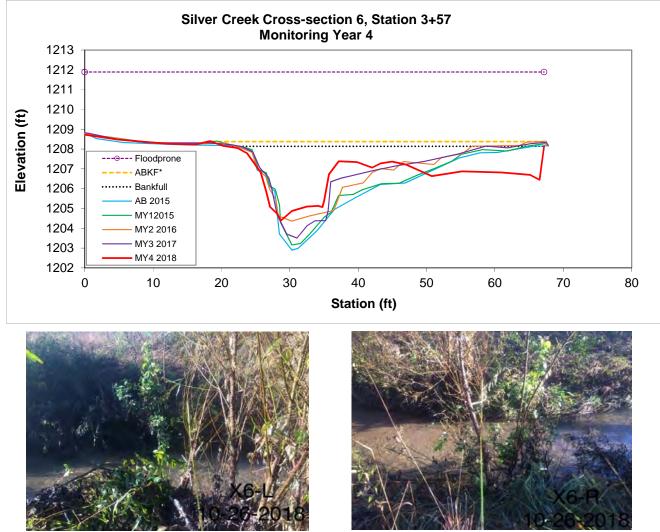

Based on	Based on fixed baseline BKF														
	Stream	BKF	BKF	BKF	Max BKF						Low TOB				
Feature	Туре	Area	Width	Depth	Depth	W/D	BH Ratio	ER	BKF Elev	TOB Elev	Depth				
Riffle	С	41.81	37.72	1.11	3.17	33.98	0.95	2.31	1203.01	1203.0	3.16				


Looking at the Left Bank

Looking at the Right Bank

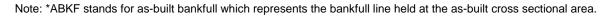
(MY4 Data - collected October, 2018)

Based on	Based on fixed baseline BKF														
	Stream	BKF	BKF	BKF	Max BKF						Low TOB				
Feature	Туре	Area	Width	Depth	Depth	W/D	BH Ratio	ER	BKF Elev	TOB Elev	Depth				
Riffle	C	39.5	25.0	1.58	2.75	15.8	0.97	3.77	1204.82	1204.99	2.92				


Looking at the Left Bank

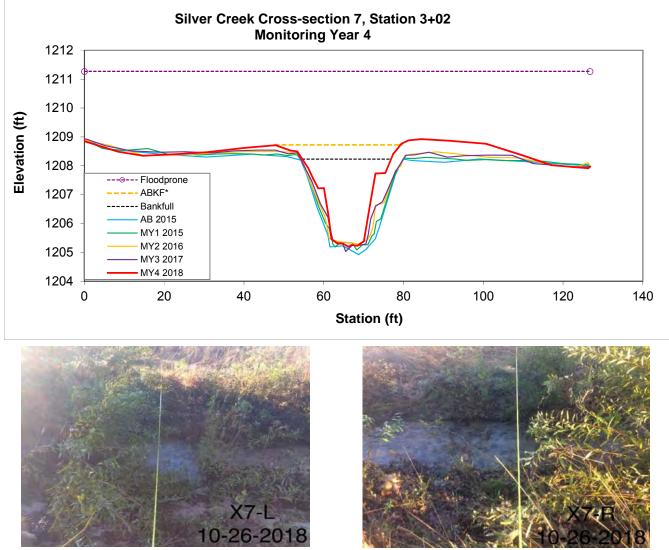
Looking at the Right Bank

Note: *ABKF stands for as-built bankfull which represents the bankfull line held at the as-built cross sectional area. ** Previously reported years had the transect orientation backwards. We are correcting this with this report.


Permanent Cross-section 6 (MY4 Data - collected October, 2018)

Based on	dased on fixed baseline BKF														
	Stream		BKF	BKF	Max BKF						Low TOB				
Feature	Туре	BKF Area	Width	Depth	Depth	W/D	BH Ratio	ER	BKF Elev	TOB Elev	Depth				
Pool	-	68.54	44.93	1.53	3.75	29.37	0.94	1.51	1208.14	1208.16	3.77				

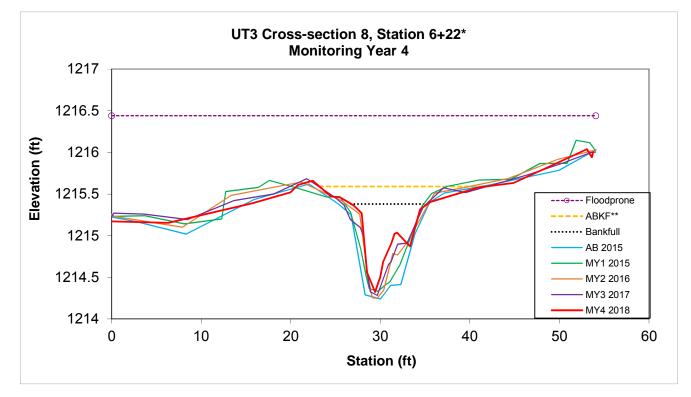
Looking at the Left Bank


Looking at the Right Bank

Permanent Cross-section 7 (MY4 Data - collected October, 2018)

Based on fixed baseline BKF

	Stream		BKF	BKF	Max BKF						Low TOB		
Feature	Туре	BKF Area	Width	Depth	Depth	W/D	BH Ratio	ER	BKF Elev	TOB Elev	Depth		
Riffle	С	37.16	22.23	1.67	3.04	13.31	1.00	5.71	1208.23	1208.71	3.52		

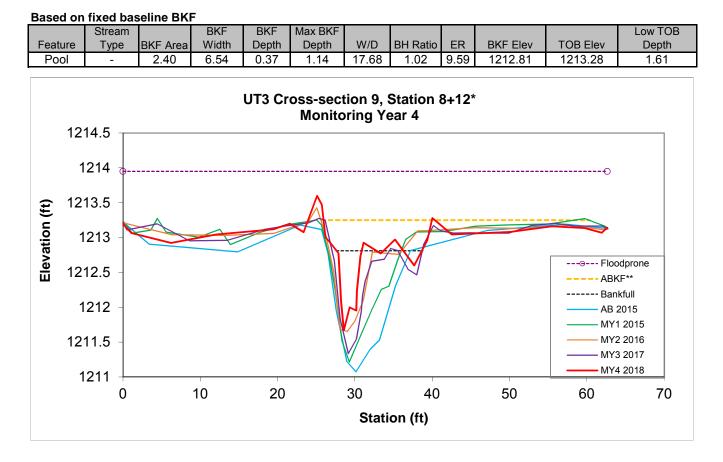

Looking at the Left Bank

Looking at the Right Bank

Note: *ABKF stands for as-built bankfull which represents the bankfull line held at the as-built cross sectional area.

Permanent Cross-section 8 (MY4 Data - collected October, 2018)

Based on	Based on fixed baseline BKF										
	Stream		BKF	BKF	Max BKF						Low TOB
Feature	Туре	BKF Area	Width	Depth	Depth	W/D	BH Ratio	ER	BKF Elev	TOB Elev	Depth
Riffle	С	3.74	8.50	0.44	1.06	19.32	0.86	6.32	1215.38	1215.41	1.09


Looking at the Left Bank

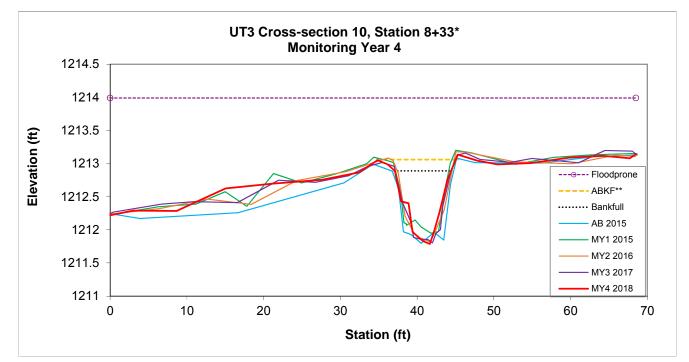
Looking at the Right Bank

* Note: Stationing for Cross-section 8 has been changed to 6+22; this was the surveyed location last year and this year and is changed from what is shown in the As-built survey and the MY1 report.

** Note: ABKF stands for as-built bankfull which represents the bankfull line held at the as-built cross sectional area.

Permanent Cross-section 9 (MY4 Data - collected October, 2018)

Looking at the Left Bank


Looking at the Right Bank

Note: *Stationing for Cross-section 9 is being changed to 8+12 which is the surveyed location for the last two years and changes from what was indicated in the As-built survey and the MY1 report. Note: **ABKF stands for as-built bankfull which represents the bankfull line held at the as-built cross sectional area.

(MY4 Data - collected October, 2018)

Based on fixed baseline BKF

Bacca en											
	Stream		BKF	BKF	Max BKF						Low TOB
Feature	Туре	BKF Area	Width	Depth	Depth	W/D	BH Ratio	ER	BKF Elev	TOB Elev	Depth
Riffle	E	4.85	7.34	0.66	1.1	11.12	0.99	9.35	1212.89	1213.05	1.262

Looking at the Left Bank

Looking at the Right Bank

Note: *Stationing for Cross-section 10 is being changed to 8+33 which is the surveyed location for the last two years and changes from what was indicated in the As-built survey and the MY1 report.

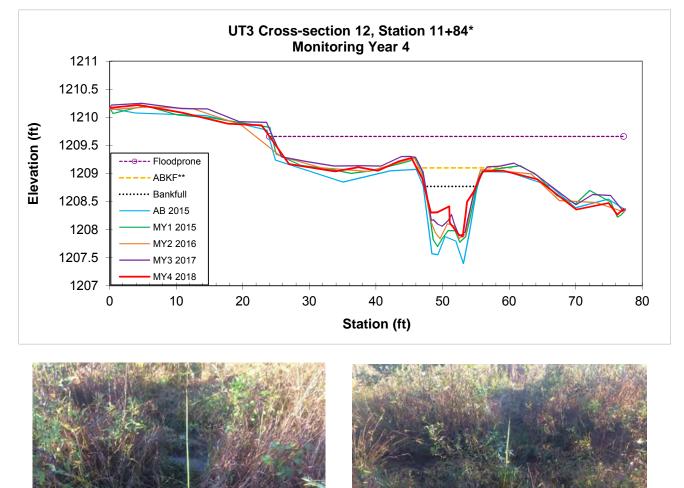
Note: **ABKF stands for as-built bankfull which represents the bankfull line held at the as-built cross sectional area.

(MY4 Data - collected October, 2018)

BKF Max BKF Low TOB Stream Feature Туре BKF Area BKF Width Depth Depth W/D **BH** Ratio ER **BKF Elev** TOB Elev Depth 6.34 Pool 6.12 11.51 0.53 1.56 21.72 0.92 1209.27 1209.37 1.65 UT3 Cross-section 11, Station 11+53* **Monitoring Year 4** 1212 1211 -Elevation (ft) 1210 1209 -- Floodprone - ABKF** ····· Bankfull 1208 AB 2015 MY1 2015 1207 MY2 2016 MY3 2017 MY4 2018 1206 40 20 30 50 60 70 80 10 0 Station (ft)

Based on fixed baseline BKF

Looking at the Left Bank


Looking at the Right Bank

10-26-20

Note: *Stationing for Cross-section 11 is being changed to 11+53 which is the surveyed location for the last two years and changes from what was indicated in the As-built survey and the MY1 report. Note: **ABKF stands for as-built bankfull which represents the bankfull line held at the as-built cross sectional area.

Permanent Cross-section 12 (MY4 Data - collected October, 2018)

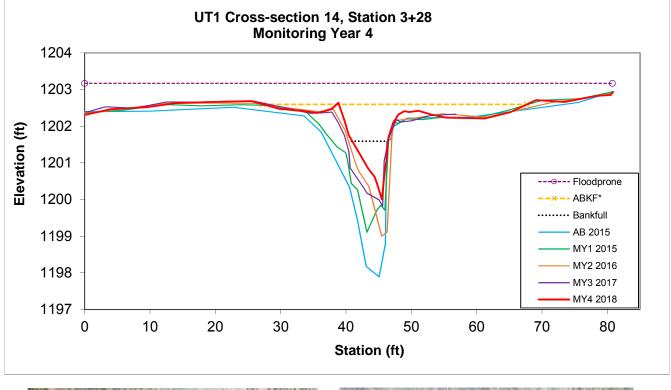
Based on	Based on fixed baseline BKF										
	Stream		BKF	BKF	Max BKF						Low TOB
Feature	Туре	BKF Area	Width	Depth	Depth	W/D	BH Ratio	ER	BKF Elev	TOB Elev	Depth
Riffle	С	3.59	7.79	0.46	0.89	16.93	0.95	6.83	1208.77	1209.04	1.16


Looking at the Right Bank

Note: *Stationing for Cross-section 11 is being changed to 11+53 which is the surveyed location for the last two years and changes from what was indicated in the As-built survey and the MY1 report. Note: **ABKF stands for as-built bankfull which represents the bankfull line held at the as-built cross sectional area.

Permanent Cross-section 13 (MY4 Data - collected October, 2018)

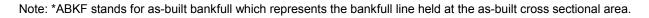
Based on fixed baseline bankfull

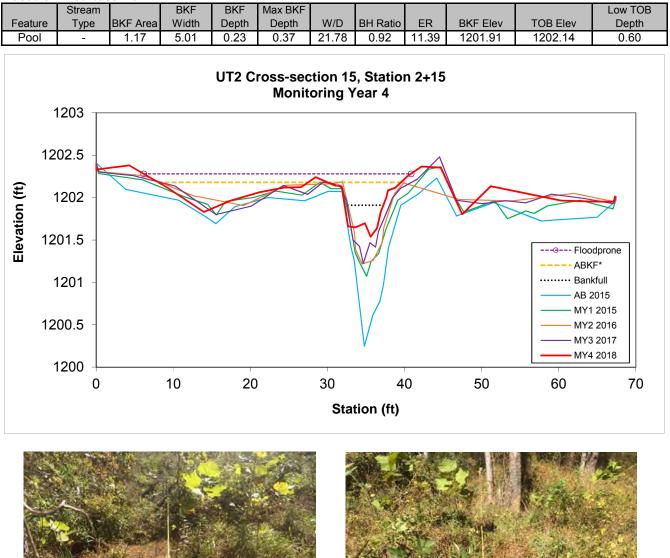

	Stream		BKF	BKF	Max BKF						Low TOB
Feature	Туре	BKF Area	Width	Depth	Depth	W/D	BH Ratio	ER	BKF Elev	TOB Elev	Depth
Riffle	С	5.87	11.49	0.51	1.2	22.53	0.99	4.38	1203.99	1204.16	1.37

Looking at the Left Bank Looking at the Right Bank Note: *ABKF stands for as-built bankfull which represents the bankfull line held at the as-built cross sectional area.

(MY4 Data - collected October, 2018)

Daseu on	Dased on fixed baseline bankidi										
	Stream		BKF	BKF	Max BKF						Low TOB
Feature	Туре	BKF Area	Width	Depth	Depth	W/D	BH Ratio	ER	BKF Elev	TOB Elev	Depth
Pool	-	3.91	5.46	0.72	1.58	7.58	0.92	14.83	1201.59	1202.41	2.40

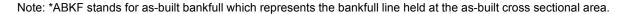



Looking at the Left Bank

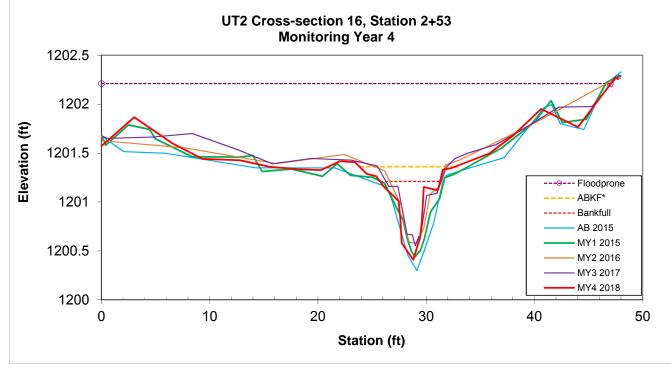
Based on fixed baseline bankfull

Looking at the Right Bank

Permanent Cross-section 15 (MY4 Data - collected October, 2018)



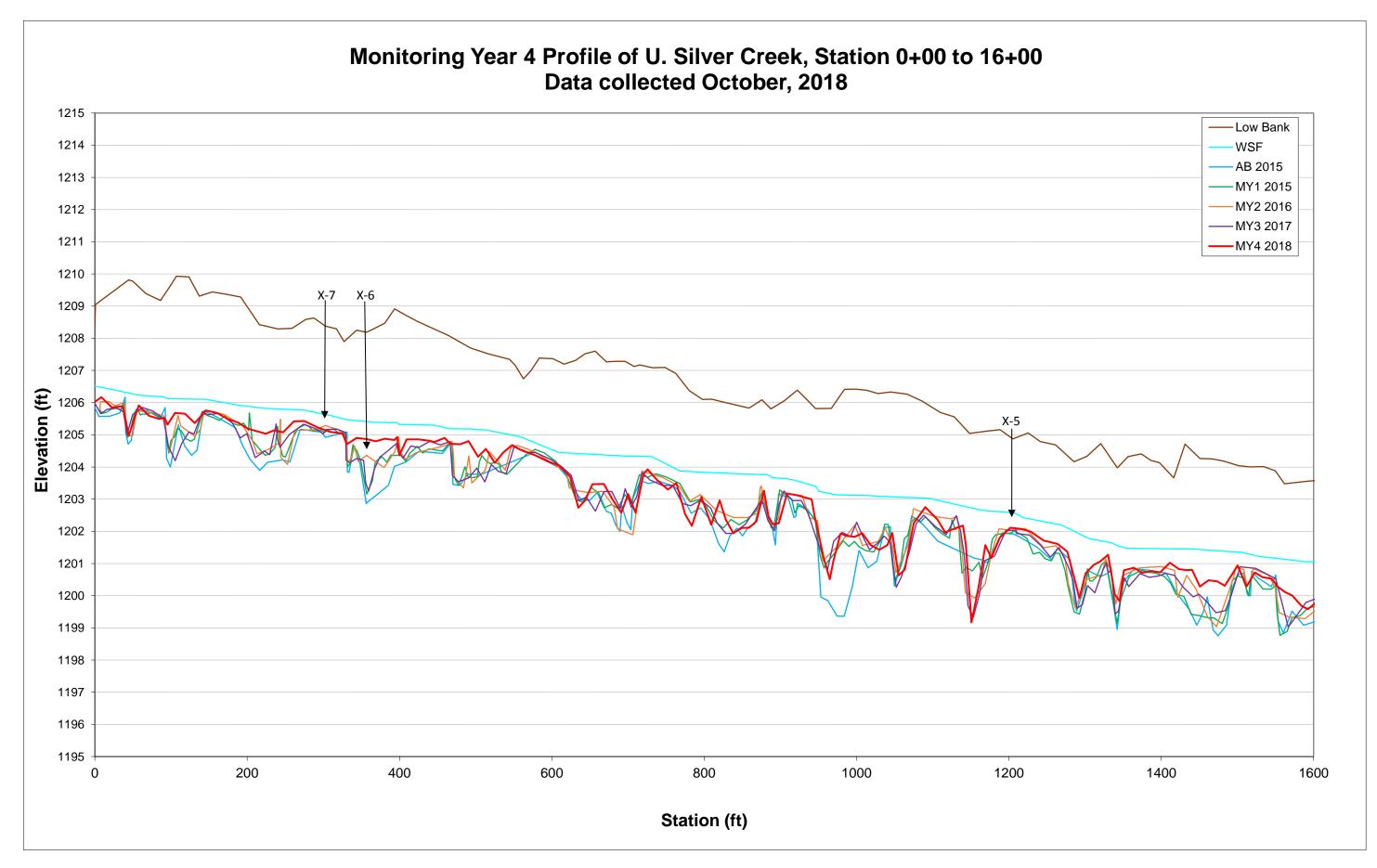
Based on fixed baseline BKF

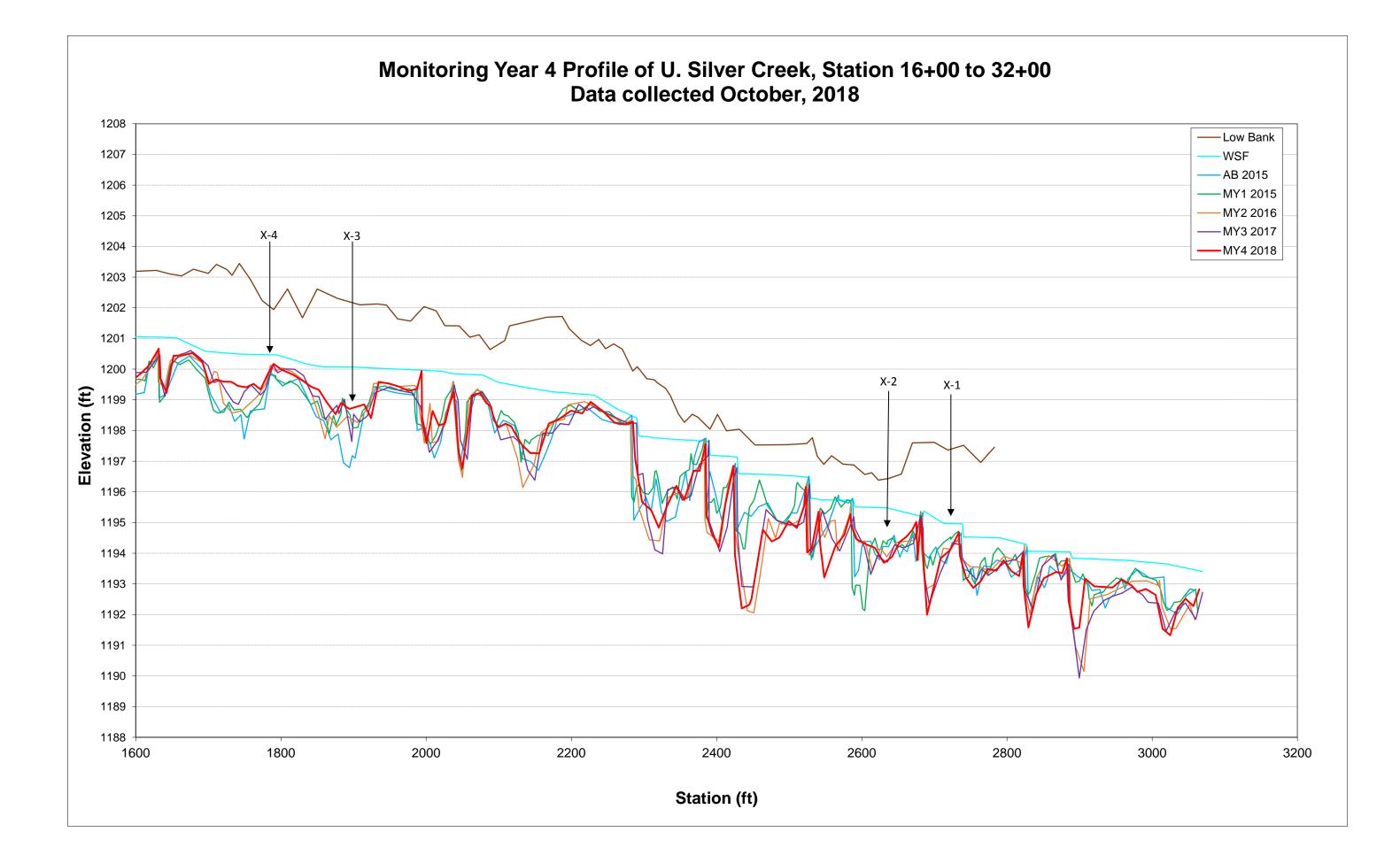

Looking at the Left Bank

Looking at the Right Bank

Permanent Cross-section 16 (MY4 Data - collected October, 2018)

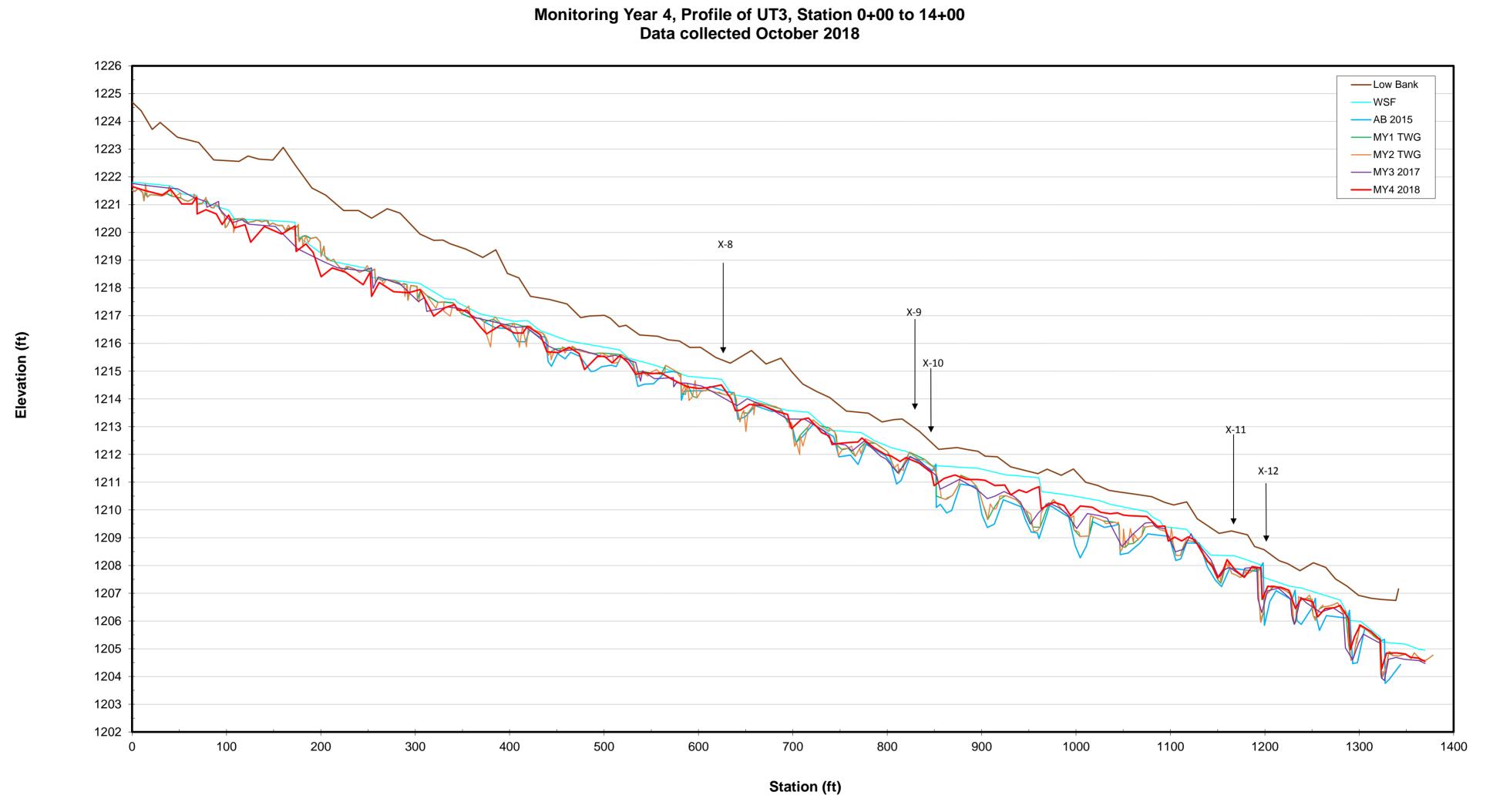
Based on fixed baseline BKF BKF Low TOB Stream BKF Max BKF Width ER TOB Elev Feature W/D **BH** Ratio **BKF Elev BKF** Area Depth Depth Depth Туре 5.55 0.80 17.90 0.97 8.29 1201.21 1201.33 0.92 Riffle С 1.72 0.31





Looking at the Left Bank

Looking at the Right Bank


Note: *ABKF stands for as-built bankfull which represents the bankfull line held at the as-built cross sectional area.

Cross-Section Pebble Count; Monitoring Year 4 U. Silver Creek Mitigation Project, DMS# 94645

SITE OR PRC	DJECT:	U. Silver Cr				
REACH/LOC.	ATION:	Riffle at XS4				
FEATURE:		Riffle				
DATE:		19-Oct-18				
				MY4 2018		Distribution
MATERIAL	PARTICLE	SIZE (mm)	Total	Class %	% Cum	Plot Size (mm)
Silt/Clay	Silt / Clay	< .063			0%	0.063
	Very Fine	.063125			0%	0.125
	Fine	.12525			0%	0.25
Sand	Medium	.2550			0%	0.50
	Coarse	.50 - 1.0	2	2%	2%	1.0
	Very Coarse	1.0 - 2.0			2%	2.0
	Very Fine	2.0 - 2.8			2%	2.8
	Very Fine	2.8 - 4.0			2%	4.0
	Fine	4.0 - 5.6			2%	5.6
	Fine	5.6 - 8.0	5	5%	7%	8.0
Gravel	Medium	8.0 - 11.0	9	9%	16%	11.0
Graver	Medium	11.0 - 16.0	12	12%	28%	16.0
	Coarse	16 - 22.6	14	14%	42%	22.6
	Coarse	22.6 - 32	13	13%	55%	32
	Very Coarse	32 - 45	17	17%	72%	45
	Very Coarse	45 - 64	21	21%	93%	64
	Small	64 - 90	3	3%	96%	90
Cobble	Small	90 - 128	3	3%	99%	128
CODDIC	Large	128 - 180	1	1%	100%	180
	Large	180 - 256			100%	256
	Small	256 - 362			100%	362
Boulder	Small	362 - 512			100%	512
Doulact	Medium	512 - 1024			100%	1024
	Large-Very Large	1024 - 2048			100%	2048
Bedrock	Bedrock	> 2048			100%	5000
Total %	of whole count		100	100%		

128

D16 =

D35 =

D50 =

Summary Data

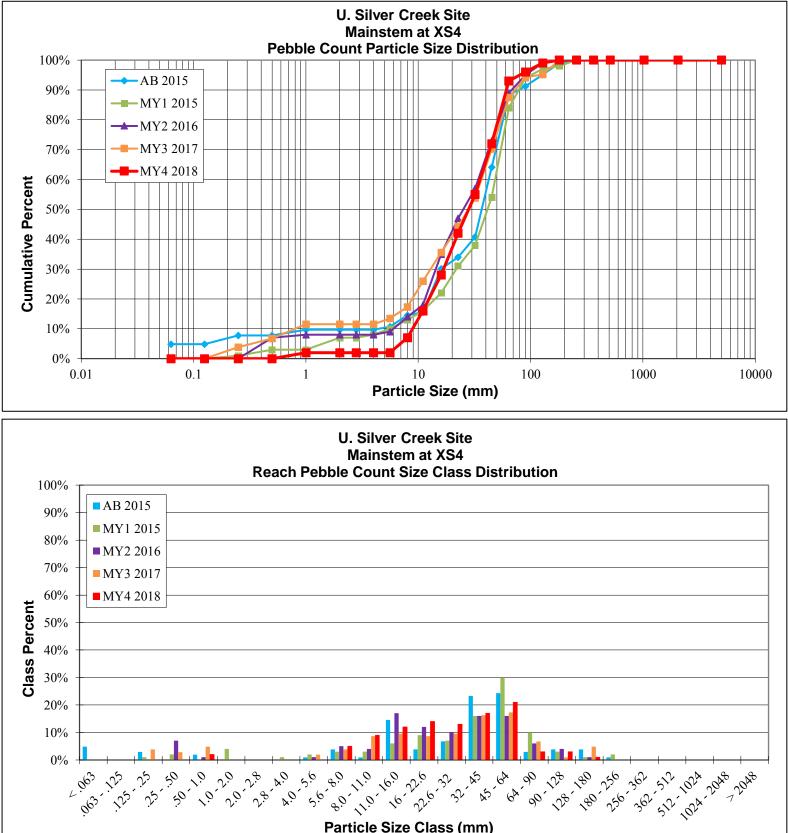
Channel materials

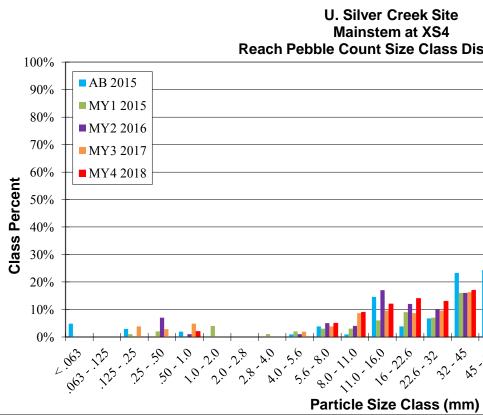
11.0 19.0

28.0

D84 =

D95 =

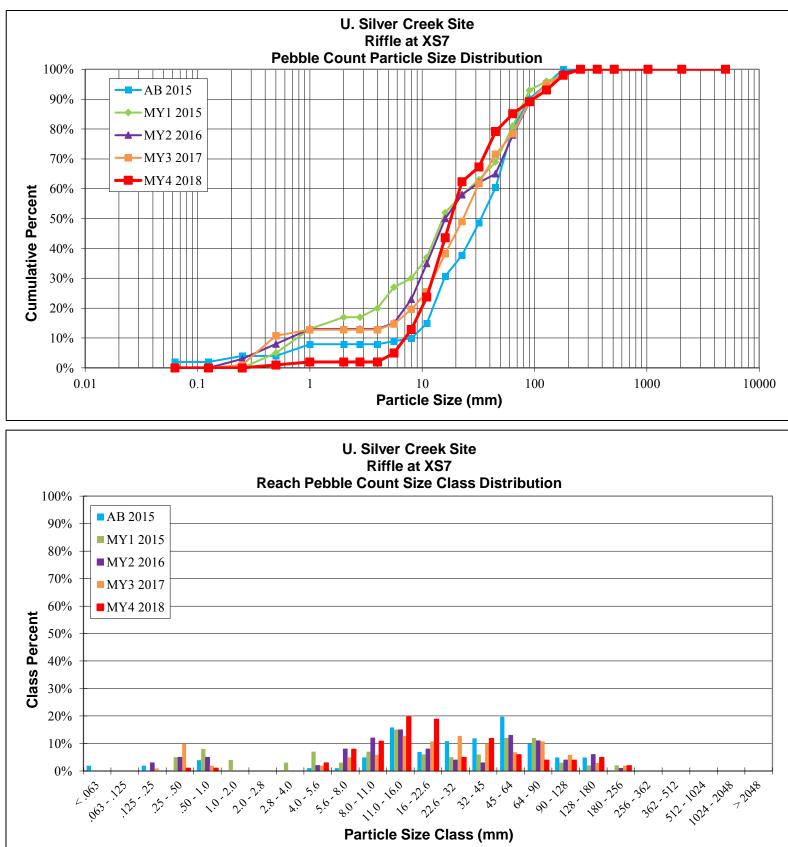

D100 =

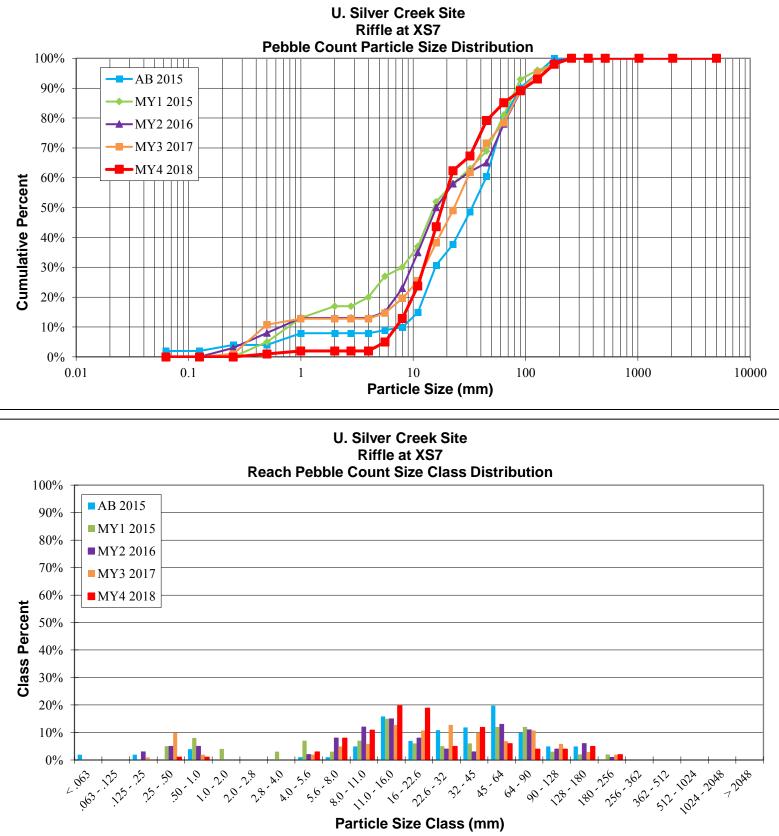

55.0

80.3

128 - 180

Largest particle=

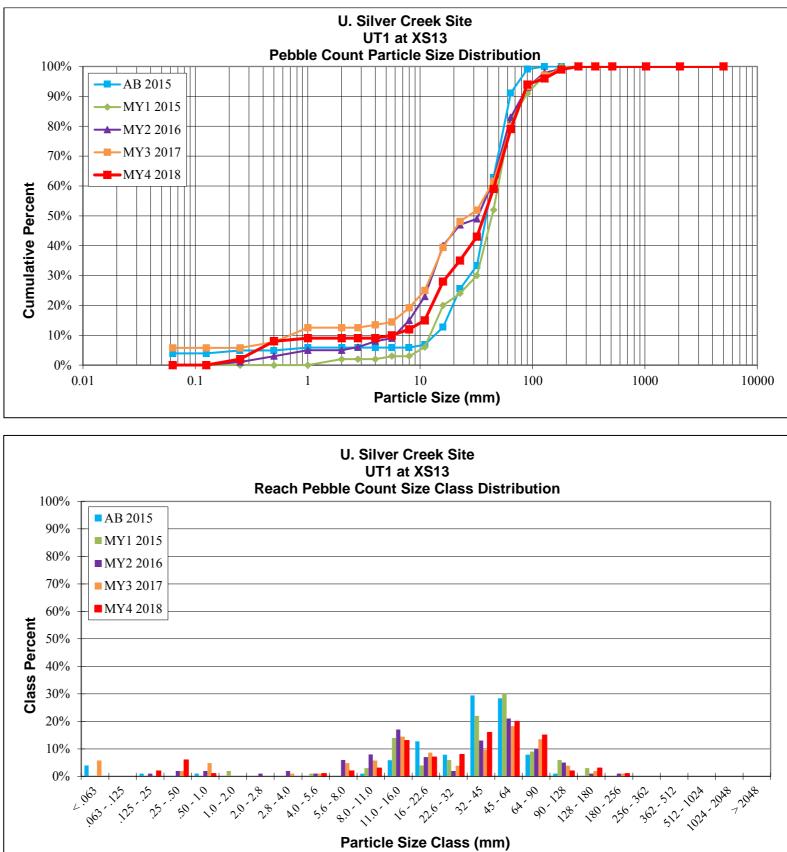


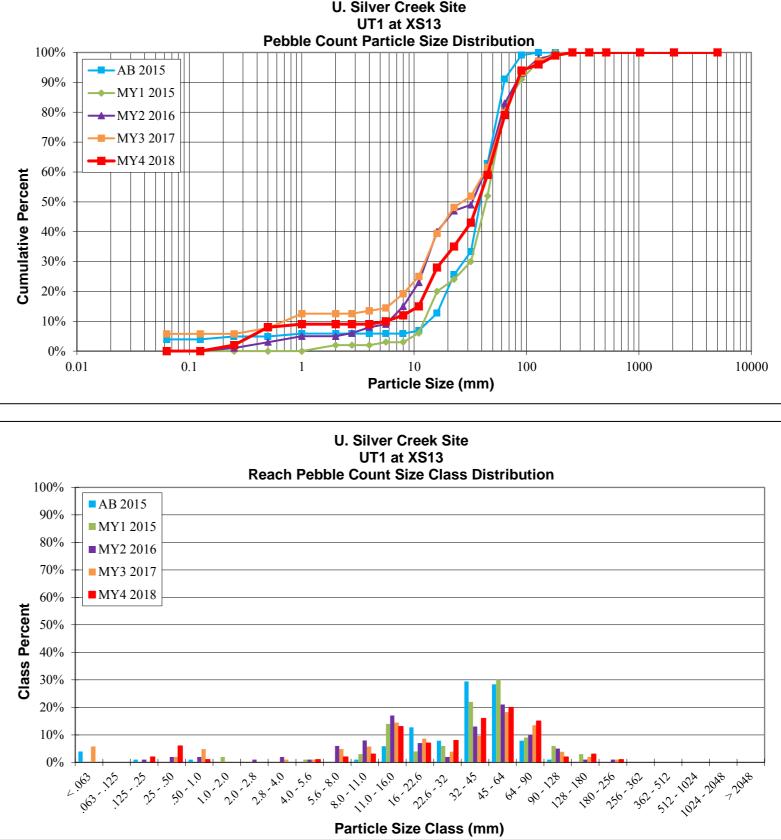

Cross-Section Pebble Count; Monitoring Year 4
U. Silver Creek Mitigation Project, DMS# 94645

SITE OR PRO	JECT:	U. Silver Cr				
REACH/LOCA	ATION:	Riffle at XS7				
FEATURE:		Riffle				
DATE:		18-Oct-18				
				MY4 2018		Distribution
MATERIAL	PARTICLE	SIZE (mm)	Total	Class %	% Cum	Plot Size (mm)
Silt/Clay	Silt / Clay	< .063			0%	0.063
	Very Fine	.063125			0%	0.125
	Fine	.12525			0%	0.25
Sand	Medium	.2550	1	1%	1%	0.50
	Coarse	.50 - 1.0	1	1%	2%	1.0
	Very Coarse	1.0 - 2.0			2%	2.0
	Very Fine	2.0 - 2.8			2%	2.8
	Very Fine	2.8 - 4.0			2%	4.0
	Fine	4.0 - 5.6	3	3%	5%	5.6
	Fine	5.6 - 8.0	8	8%	13%	8.0
Coursel	Medium	8.0 - 11.0	11	11%	24%	11.0
Gravel	Medium	11.0 - 16.0	20	20%	44%	16.0
	Coarse	16 - 22.6	19	19%	62%	22.6
	Coarse	22.6 - 32	5	5%	67%	32
	Very Coarse	32 - 45	12	12%	79%	45
	Very Coarse	45 - 64	6	6%	85%	64
	Small	64 - 90	4	4%	89%	90
Cobble	Small	90 - 128	4	4%	93%	128
Cobble	Large	128 - 180	5	5%	98%	180
	Large	180 - 256	2	2%	100%	256
	Small	256 - 362			100%	362
Boulder	Small	362 - 512			100%	512
Doulder	Medium	512 - 1024			100%	1024
	Large-Very Large	1024 - 2048			100%	2048
Bedrock	Bedrock	> 2048			100%	5000
Total % o	of whole count		101	100%		

Largest particle= 180

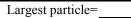
Summary Data								
Channel materials								
D16 =	8.8	D84 =	59.8					
D35 =	13.6	D95 =	146.2					
D50 =	18.0	D100 =	180 - 256					

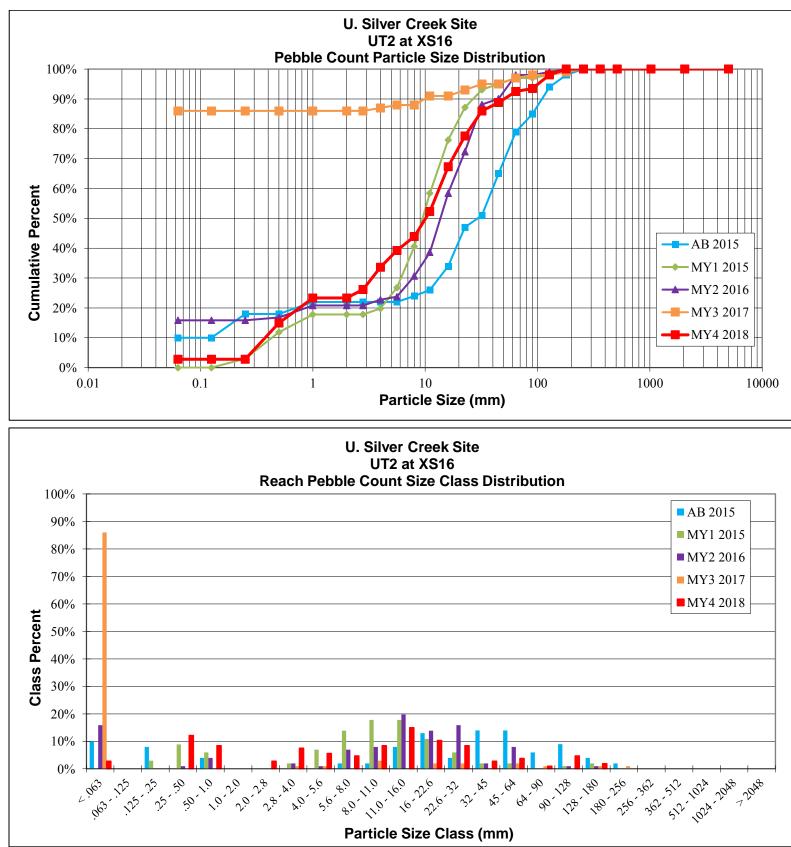


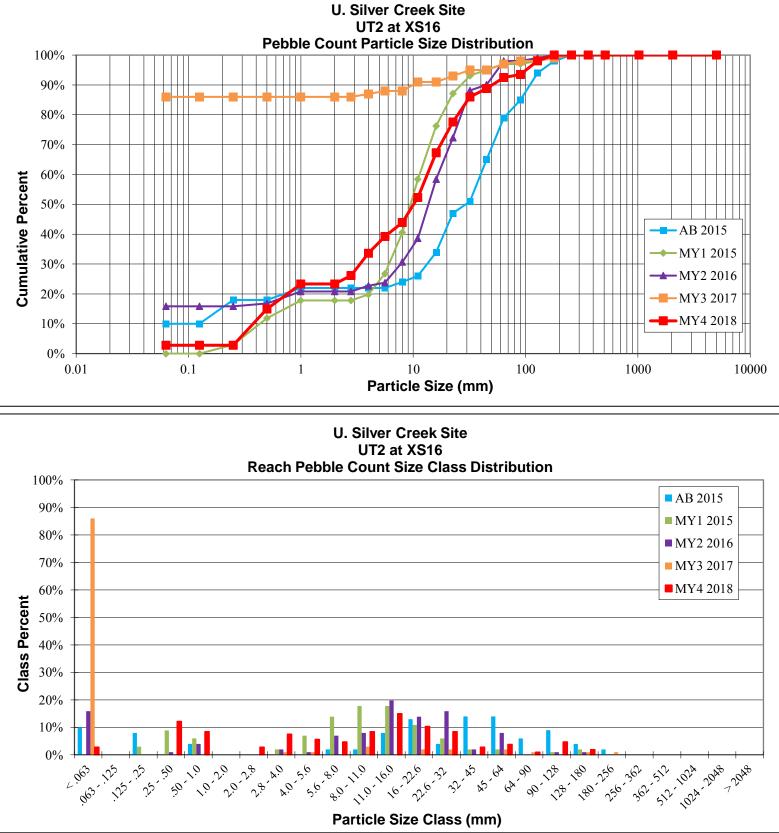

Cross-Section Pebble Count; Monitoring Year 4 U. Silver Creek Mitigation Project, DMS# 94645

SITE OR PRO	JECT:	U. Silver Cr				
REACH/LOC	ATION:	UT1 XS13				
FEATURE:		Riffle				
DATE:		19-Oct-18				
				MY4 2018		Distribution
MATERIAL	PARTICLE	SIZE (mm)	Total	Class %	% Cum	Plot Size (mm)
Silt/Clay	Silt / Clay	< .063			0%	0.063
	Very Fine	.063125			0%	0.125
	Fine	.12525	2	2%	2%	0.25
Sand	Medium	.2550	6	6%	8%	0.50
	Coarse	.50 - 1.0	1	1%	9%	1.0
	Very Coarse	1.0 - 2.0			9%	2.0
	Very Fine	2.0 - 2.8			9%	2.8
	Very Fine	2.8 - 4.0			9%	4.0
	Fine	4.0 - 5.6	1	1%	10%	5.6
	Fine	5.6 - 8.0	2	2%	12%	8.0
Gravel	Medium	8.0 - 11.0	3	3%	15%	11.0
Graver	Medium	11.0 - 16.0	13	13%	28%	16.0
	Coarse	16 - 22.6	7	7%	35%	22.6
	Coarse	22.6 - 32	8	8%	43%	32
	Very Coarse	32 - 45	16	16%	59%	45
	Very Coarse	45 - 64	20	20%	79%	64
	Small	64 - 90	15	15%	94%	90
Cobble	Small	90 - 128	2	2%	96%	128
Copple	Large	128 - 180	3	3%	99%	180
	Large	180 - 256	1	1%	100%	256
	Small	256 - 362			100%	362
Boulder	Small	362 - 512			100%	512
Douider	Medium	512 - 1024			100%	1024
	Large-Very Large	1024 - 2048			100%	2048
Bedrock	Bedrock	> 2048			100%	5000
Total % o	of whole count		100	100%		

Largest particle=

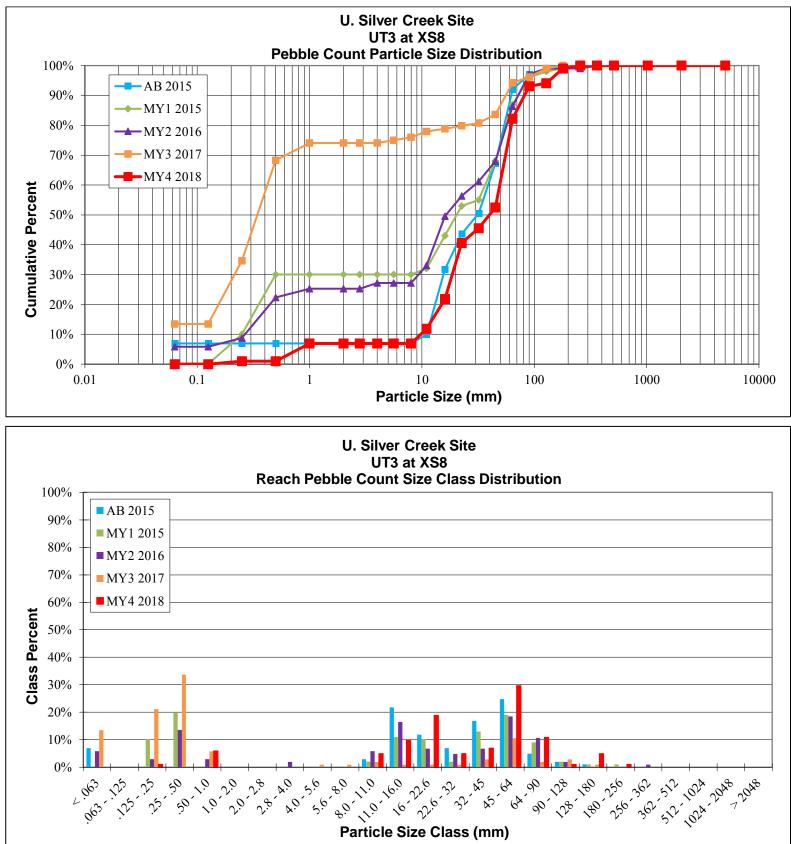

180			
	Summa	ry Data	
	Channel	materials	
D16 =	11.3	D84 =	71.7
D35 =	22.6	D95 =	107.3
D50 =	37.1	D100 =	180 - 256
	D16 = D35 =	Summa Channel D16 = 11.3 D35 = 22.6	Summary Data Channel materials D16 = 11.3 D84 = D35 = 22.6 D95 =

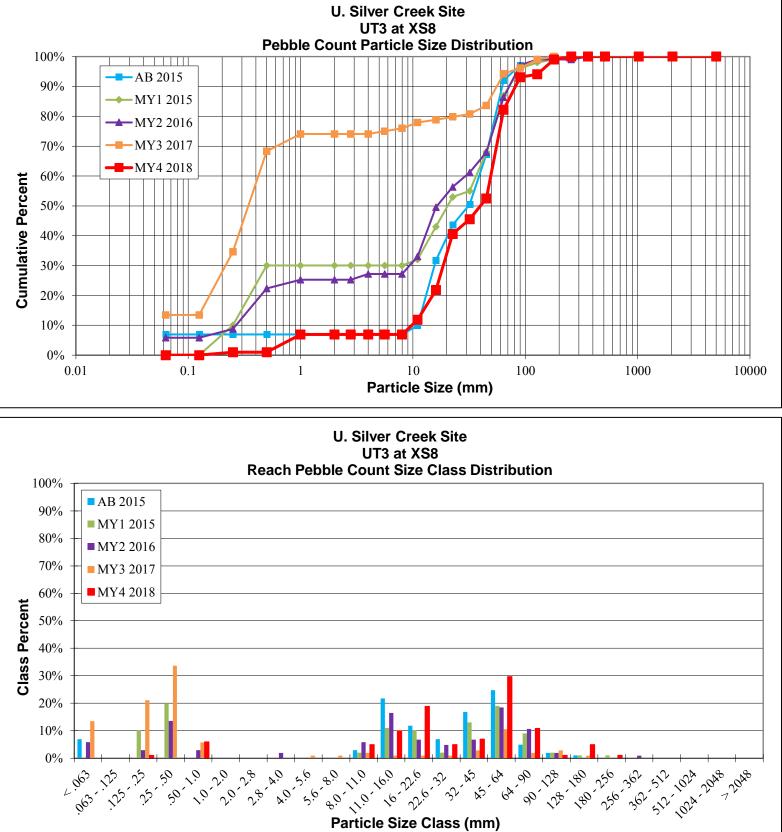



Cross-Section Pebble Count; Monitoring Year 4
U. Silver Creek Mitigation Project, DMS# 94645

SITE OR PRO	JECT:	U. Silver Cr				
REACH/LOCA	ATION:	UT2 XS16				
FEATURE:		Riffle				
DATE:		19-Oct-18				
				MY4 2018		Distribution
MATERIAL	PARTICLE	SIZE (mm)	Total	Class %	% Cum	Plot Size (mm)
Silt/Clay	Silt / Clay	< .063	3	3%	3%	0.063
	Very Fine	.063125			3%	0.125
	Fine	.12525			3%	0.25
Sand	Medium	.2550	13	12%	15%	0.50
	Coarse	.50 - 1.0	9	8%	23%	1.0
	Very Coarse	1.0 - 2.0			23%	2.0
	Very Fine	2.0 - 2.8	3	3%	26%	2.8
	Very Fine	2.8 - 4.0	8	7%	34%	4.0
	Fine	4.0 - 5.6	6	6%	39%	5.6
	Fine	5.6 - 8.0	5	5%	44%	8.0
Gravel	Medium	8.0 - 11.0	9	8%	52%	11.0
Graver	Medium	11.0 - 16.0	16	15%	67%	16.0
	Coarse	16 - 22.6	11	10%	78%	22.6
	Coarse	22.6 - 32	9	8%	86%	32
	Very Coarse	32 - 45	3	3%	89%	45
	Very Coarse	45 - 64	4	4%	93%	64
	Small	64 - 90	1	1%	93%	90
Cobble	Small	90 - 128	5	5%	98%	128
Conne	Large	128 - 180	2	2%	100%	180
	Large	180 - 256			100%	256
	Small	256 - 362			100%	362
Boulder	Small	362 - 512			100%	512
Doulder	Medium	512 - 1024			100%	1024
	Large-Very Large	1024 - 2048			100%	2048
Bedrock	Bedrock	> 2048			100%	5000
Total % c	of whole count		107	100%		
	Largest particle=	128				

	Summa	ry Data	
	Channel	materials	
D16 =	0.5	D84 =	29.5
D35 =	4.3	D95 =	101.1
D50 =	10.1	D100 =	128 - 180




Cross-Section Pebble Count; Monitoring Year 4 U. Silver Creek Mitigation Project, DMS# 94645

SITE OR PRO	JECT:	U. Silver Cr				
REACH/LOCA	ATION:	UT3 XS8				
FEATURE:		Riffle				
DATE:		19-Oct-18				
				MY4 2018		Distribution
MATERIAL	PARTICLE	SIZE (mm)	Total	Class %	% Cum	Plot Size (mm)
Silt/Clay	Silt / Clay	< .063			0%	0.063
	Very Fine	.063125			0%	0.125
	Fine	.12525	1	1%	1%	0.25
Sand	Medium	.2550			1%	0.50
	Coarse	.50 - 1.0	6	6%	7%	1.0
	Very Coarse	1.0 - 2.0			7%	2.0
	Very Fine	2.0 - 2.8			7%	2.8
	Very Fine	2.8 - 4.0			7%	4.0
	Fine	4.0 - 5.6			7%	5.6
	Fine	5.6 - 8.0			7%	8.0
Gravel	Medium	8.0 - 11.0	5	5%	12%	11.0
Graver	Medium	11.0 - 16.0	10	10%	22%	16.0
	Coarse	16 - 22.6	19	19%	41%	22.6
	Coarse	22.6 - 32	5	5%	46%	32
	Very Coarse	32 - 45	7	7%	52%	45
	Very Coarse	45 - 64	30	30%	82%	64
	Small	64 - 90	11	11%	93%	90
Cobble	Small	90 - 128	1	1%	94%	128
Conne	Large	128 - 180	5	5%	99%	180
	Large	180 - 256	1	1%	100%	256
	Small	256 - 362			100%	362
Boulder	Small	362 - 512			100%	512
Doulder	Medium	512 - 1024			100%	1024
	Large-Very Large	1024 - 2048			100%	2048
Bedrock	Bedrock	> 2048			100%	5000
Total % o	of whole count		101	100%		

Largest particle= 180

	Summa	ry Data	
	Channel	materials	
D16 =	12.86	D84 =	67.76
D35 =	20.39	D95 =	136.57
D50 =	39.84	D100 =	180 - 256

Table 10. Monitoring Year 4 Stream Summary Upper Silver Creek Restoration Project: DMS Project ID No. 94645

Silver Creek Mainstem **Reference Reach Data** Pre-Existing Condition MY2 Regional Curve Interval ^{1,2} NC Mtn./NC Pied. Rural Morgan Creek Min Mean Med Max MY1 Gauge Design As-built
 Unit Min
 Max
 SD
 n
 Min
 Mean
 Med
 Max
 SD
 n
 Min
 Mean
 Mean
 Mean
 Mean
 Mean
 Mean
 Mean
 Mean
 Mean SD BF Width (29.0 19.0 21. 453.0 2.9 <u>3.9</u> Floodprone Width (f BF Mean Depth (f BF Max Depth (f 86.8 1.6 2.1 2.4 2.9 79.8 14.7
 2.8
 3.0
 3.2
 0.17
 4
 2.8
 3.0
 3.0
 3.2
 0

 43.4
 45.4
 43.8
 50.6
 3.02
 4
 41.1
 44.0
 43.7
 47.6
 2

 12.4
 13.8
 13.6
 15.7
 12.0
 4
 13.5
 14.1
 13.9
 15.0
 0

 3.3
 4.0
 3.5
 4.0
 3.5
 4.0
 3.8
 4.9
 0.59
 4
 3.5
 10.3
 3.6
 0.50
 4.3
 3.5
 4.0
 3.8
 4.9
 0.59
 4
 3.5
 4.0
 3.8
 4.9
 0.59
 4
 3.5
 4.0
 3.8
 4.9
 0.59
 4
 3.5
 4.0
 3.8
 4.9
 0.59
 3.9 55.2 3.0 46.0 45.0 BF Cross-sectional Area 56.0 Width/Depth Rat Entrenchment Rat 2.6 1.0
 3.3
 4.0
 3.8
 4.9
 0.59
 4
 3.5
 4.0
 3.8
 4.9
 0

 1.00
 1.00
 1.00
 1.00
 0.00
 4
 1.00
 1.00
 1.00
 0
 Bank Height Ra 1.5 1.0 17.0 - - - -
 99.0
 133.3
 137.7
 157.9
 19.24
 13

 52.6
 57.2
 55.0
 67.9
 503
 8

 1.95
 2.12
 2.04
 2.51
 0.19
 8

 172.0
 225.4
 201.7
 310.0
 49.34
 8

 99.0
 133.3
 137.7
 157.9
 19.24
 13
 99.0
 133.3
 137.7
 157.9
 19.

 52.6
 57.2
 55.0
 67.9
 50.3
 8
 52.6
 57.2
 55.0
 67.9
 51.

 1.95
 2.12
 2.04
 2.51
 0.19
 8
 1.95
 2.12
 2.04
 2.51
 0.1

 172.0
 225.4
 201.7
 31.00
 49.3
 8
 172.0
 225.4
 201.7
 31.00
 49.3
 45 - - 106 16.0 - - 62.0 208 73.0 Channel Beltwidth 104 -47.0 ---Radius of Curvature (f Rc:Bankfull width (ft/f 3.1 139 5.4 Meander Wavelength 7.5 11.5 1.83 8 Meander Width Ra 8.3 7.5 11.5 1.8 Riffle Length (f Riffle Slope (ft/f 0.108 135 162 4.1 - 0.005 0.024 137 Pool Length (15 78 Pool Spacing 104 182 Pool Max Depth (1 4.0 4.1 4.1 5.5 -Pool Volume (. - ransport Parameters Ri% / Ru% / P% / G% / S SC% / Sa% / G% / B% / Be · · · · · · · · · · · · - - -- -- mean 7.7 / 13.5 / 20.6 / 67.2 /116.7 mean 11.2 / 21.8 / 35.0 / 66.6 /126.9 mean 6.4 / 18.8 / 28.3 / 66.9 /10 d16 / d35 / d50 / d84 / d9 1.0 / 8.4 / 17 0.035 0.5 Reach Shear Stress (competency) lb 1.13 Max part size (mm) mobilized at bankfu (Rosgen Cur 40 sport capacity) V onal Reach Parameters Drainage Area (S 2.73 - -- <5% -- E -2.73 -2.73 - <5% 2.73 - <5% 3.0 3.35 8.4 3.35 3.35 - 3.35 2.73 - -3.35 Impervious cover estimate (C4 Rosgen Classificat C 4 27 BF Velocity (fr 524 BF Discharge (c Valley Leng 232.0 196.0 213.2 212.2 1947.0 229.3 1947.0 229.3 1947.0 1947.0 10/17 Channel length (ft 3179 3068 3016 1.55 3016 3016 1.55 1.63 1.58 1.55 - 0.004 - 0.004 - 5.2 Water Surface Slope (Channel) (ft/f BF slope (ft/f 0.007 0.003 0.004 0.004 0.004 0.004 -0.008 2.1 5.2 Ber stope (17) Bankfull Floodplain Area (acre BEHI VL% / L% / M% / H% / VH% / E% Channel Stability or Habitat Metri 5.2 5.2 Biological or Ot . eds. American Water H rman, W.A., D.E. Wise, M.A. Walker, R. Morris, M.A Cantrell, M. Clemmons, G.D. Jennings, D.R. Clinton, J.M. Patterson. 2000. Bankfull Regional Curves for North Carolina Mountain Streams. In: AWRA Conference Proceedings, D.L. Kane, editor. American Water Resources Specialty Conference on Water Resources American Water Resources in Extreme Environments. Anchorage, Alaska Reference Reach Da USGS Design As-built MY1 MY2 rameter Regional Curve Interval 1,2 Pre-Existing Condition¹
 Pre-Existing Condition
 UT3 upstream of Gold Mine Road

 Min
 Mean
 Med
 Max
 SD
 n
 Min
 Mean
 Med
 Max
 SD
 Gauge n Min Mean Med Max SD n ate - Riffle NC Mtn./NC Pied. Rural BF Width (11.9 6.9 60.5 10.9 Floodprone Width (60.5 1.50 19.0 >150 0.93 0.70 1.00 0.95 BF Mean Depth (0.90 0.8 0.8 BF Mean Depth (1 BF Max Depth (1 BF Cross-sectional Area (f Width/Depth Rat 1.4 6.5 11.7 3.0 1.3 8.9 10.3 5.3 9.1 9.0 9.6 10.0 10 Entrenchment Ra Bank Height Rat 3.0 4 1.0 1.0 1.0 1.00 38.8 1.0 d50 (m 18.0 43.6 <u>33.0</u> - -17<u>.0</u> - -
 33.3
 49.6
 44.6
 70.1
 13.1
 5
 33.3
 49.6
 44.6
 70.1
 1

 21.4
 23.0
 22.6
 25.6
 1.6
 5
 21.4
 23.0
 22.6
 25.6
 1.6
 5
 21.4
 23.0
 22.6
 25.6
 1.6
 5
 21.4
 23.0
 22.6
 25.6
 1.7
 0
 69.6
 74.4
 72.0
 81.6
 5.18
 3
 69.6
 74.4
 72.0
 81.6
 5
 Channel Beltwidth (f Radius of Curvature (f Rc:Bankfull width (ft/f Meander Wavelength (f 60.0 21.0 76.0 27.0 2.8
 33.3
 49.6
 44.6
 70.1
 13.1
 5

 21.4
 23.0
 22.6
 25.6
 1.63
 5

 2.2
 2.4
 2.4
 2.7
 0.17
 5

 69.6
 74.4
 72.0
 81.6
 5.18
 3
 30.0 - -- -- -. . . -1.8 67.0 75.0 Meander Width Ra 18.0 1.2 7.0 12.0 7.5 8.5 0.5 7.3 7.8 7.5 8.5 0.5
 16.1
 20.2
 19.9
 24.9
 4.1
 4

 0.019
 0.030
 0.027
 0.050
 0.012
 4

 26.1
 33.8
 35.1
 41.7
 6.6
 5

 23.4
 46.0
 51.6
 60.1
 13.3
 7

 9.9
 18.5
 18.1
 30.5
 6.3
 7
 9.9
 19.2
 21.3
 30.8
 7.

 0.010
 0.021
 0.020
 0.039
 0.011
 7
 0.010
 0.032
 0.030
 0.064
 0.0

 8.6
 26.9
 32.2
 40.6
 10.9
 9
 10.8
 25.4
 21.8
 56.3
 13

 21.9
 41.7
 40.9
 60.7
 14.6
 9
 19.2
 36.2
 36.8
 56.1
 12
 Riffle Length - 0.013 - 0.054 0.017 0.039 0.022 Riffle Slope (ft/ft Pool Length (f Pool Spacing (ft Pool Max Depth (ft 0.018 50.0 62.3 38.0 66.5 3.3 15.0 2.0 2.4 1.8 1.8 1.9 - 1.4 2.5 1 2.6 1 Pool Volume (rate and Transport Parameters rate and Transport Parameters Ri% / Ru% / P% / G% / S% SC% / Sa% / G% / B% / B% d16 / d35 / d50 / d84 / d95 Reach Shear Stress (competency) lb// Max part size (mm) mobilized at bankful Max part size (mm) mobilized at bankful - -- - -- -14.4/ 34.6 / 43.6 / 69.0 / 8.3/ 14.3 / 32.9 / 66.2 / 103.6 49/8 7.5 / 32.6 / 38.8 / 58.6 / 0.1 0.5 - 0.6 1.0 (Rosgen Cur stream Power (transport capacity) W 32.0 28.5 30 Stream Power (transport capacity) Win itional Reach Parameters Drainage Area (SM Impervious cover estimate (% Rosgen Classificatio BF Velocity (fps b p (c) (c) (fps) 2.73 -2.73 - <5% 2.73 - - 3.35 - <5% - -0.28 0.28 0.12 0.28 3.35 -- 3.35 -- -- - -E/Bc E, Gc, Bc E (high W/D 3.7 18 38.0 36.0 BF Discharge (c 24.4 367.0 Valley Lengt Channel length (ft) 134.5 373 495 495 495 524 1.05 1.36 1.36 1.36 Water Surface Slope (Channel) (ft/f 0.0160 0.0189 0.0150 0.011 0.0162 0.0161 0.0162 0.0161 0.0162 0.0161 BF slope (ft/ Bankfull Floodplain Area (ac 5.2 5.2 5.2 --BEHI VL% / L% / M% / H% / VH% / E Channel Stability or Habitat Metr -

				м	¥3					м	¥4		
SD	n	Min	Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD	n
).84	4	24.0	24.9	25.0	25.8	0.62	4	20.3	26.3	23.5	37.7	6.83	4
-	-	-	>300	-	-	-	-	-	>300	-	-	-	-
).06	4	1.7	1.7	1.7	1.8	0.06	4	1.1	1.6	1.6	1.9	0.28	4
).16	4	2.8	3.1	3.1	3.2	0.17	4	2.8	3.1	3.1	3.4	0.23	4
2.51	4	41.6	42.9	41.9	46.2	1.93	4	36.5	39.0	38.9	41.8	1.94	4
).59	4	13.7	14.5	14.6	15.1	0.52	4	10.7	18.5	14.5	34.0	9.15	4
).54	4	3.5	4.0	3.7	4.9	0.57	4	2.3	4.1	4.2	5.8	1.32	4
).43	4	1.01	1.03	1.03	1.06	0.02	4	0.95	0.98	0.99	1.00	0.02	4
-	-	-	-	-	-	-	-	-	-	-	-	-	-
				-	-		-			-			
9.24	13	99.0	133.3	137.7	157.9	19.24	13	99.0	133.3	137.7	157.9	19.24	13
5.03	8	52.6	57.2	55.0	67.9	5.03	8	52.6	57.2	55.0	67.9	5.03	8
).19	8	1.95	2.12	2.04	2.51	0.19	8	1.95	2.12	2.04	2.51	0.19	8
9.34	8	172.0	225.4	201.7	310.0	49.3	8	172.0	225.4	201.7	310.0	49.34	8
1.83	8	6.4	8.3	7.5	11.5	1.8	8	6.4	8.3	7.5	11.5	1.83	8
6.72	15	22.7	53.3	51.1	79.5	15.7	15	32.4	54.8	49.9	85.3	16.60	15
.004	15	0.000	0.007	0.008	0.013	0.005	15	0.000	0.008	0.009	0.014	0.004	15
6.74	19	11.9	81.5	84.2	160.7	34.4	19	21.0	80.3	82.2	149.1	31.40	19
2.03	20	50.5	118.9	111.9	193.5	39.1	20	50.2	113.8	117.1	184.7	34.10	20
).23	3	1.1	2.0	1.7	4.2	0.86	20	0.8	1.8	1.7	3.5	0.76	20
-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-
	2	n	nean 6.7 / 1	5.1 / 25.5	/ 68.0 / 12	3	2	m	ean 9.9 / 1	6.3 / 23 / 5	7.4 / 113.2	5	2
1		-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-
-		•	-	-		-	-		-	-	-	-	-
	-	2.73	-	-	3.35	-	-	2.73	-	-	3.35	-	-
-	-	-	<5%	-	-	-	-		<5%	-	-	-	-
-	-	-	С	-	-	-	-	-	С	-	-	-	-
-	-	-	4.21	-	-	-	-	-	4.21	-	-	-	-
-	-	-	229.3	-	-	-	-	-	229.3	-	-	-	-
-	-	-	1947.0	-	-	-	-	-	1947.0	-	-	-	-
-	-	-	3016	-	-	-	-	-	3016	-	-	-	-
	-	-	1.55	-	-	-	-		1.55	-	-	-	-
	-	-	0.004	-	-	-	-	-	0.004	-	-	-	-
-	-	-	0.004	-	-	-	-	-	0.004	-	-	-	-
-	-	-	5.2	-	-	-	-	-	5.2	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-

				М	¥3					М	¥4		
SD	n	Min	Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD	n
-	1	-	9.0	-	-	-	1	-	11.5	-	-	-	1
-	1	-	>150	-	-	-	1	-	>150	-	-	-	1
-	1	-	0.8	-	-	-	1	-	0.5	-	-	-	1
-	1	-	1.1	-	-	-	1	-	1.2	-	-	-	1
-	1	-	7.0	-	-	-	1	-	5.9	-	-	-	1
-	1	-	11.7	-	-	-	1	-	22.5	-	-	-	1
-	1	-	5.6	-	-	-	1	-	4.4	-	-	-	1
-	1	-	1.10	-	-	-	1	-	0.99	-	-	-	1
-	1	-	26.9	-	-	-	1	-	37.1	-	-	-	1
13.1	5	33.3	49.6	44.6	70.1	13.1	5	33.3	49.6	44.6	70.1	13.08	5
1.6	5	21.4	23.0	22.6	25.6	1.6	5	21.4	23.0	22.6	25.6	1.63	5
).17	5	2.2	2.4	2.4	2.7	0.17	5	2.2	2.4	2.4	2.7	0.17	5
5.18	3	69.6	74.4	72.0	81.6	5.18	3	69.6	74.4	72.0	81.6	5.18	3
0.5	3	7.3	7.8	7.5	8.5	0.5	3	7.3	7.8	7.5	8.5	0.54	3
7.2	8	9.8	21.4	21.4	30.9	7.0	8	6.7	14.3	14.0	22.5	4.46	8
.016	8	0.008	0.020	0.017	0.033	0.009	8	0.006	0.028	0.021	0.062	0.020	8
3.4	11	12.3	27.4	22.4	60.4	15.4	11	10.0	25.8	23.5	51.6	13.88	11
2.7	12	11.5	34.2	26.9	59.5	14.8	14	6.5	32.3	26.9	67.6	17.27	14
-	1	-	1.2	-	-	-	1	0.5	1.1	1.0	2.1	0.40	9
-	-	-	-	-	-	-	-	-	-	-	-	-	-
			i						i	i	i		
-	-		-	-	-	-	-		-	-	-	-	
-	-	-	-				-	-					
-	-	-		14.3 / 26.9	/712/1	15.5	-	-	11.3	22 6/37	.1/71.7/1	07.3	
	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	
						-		-		-			
-	-	-	-		-	-	-	-	-	-	-	-	
-		-		-	-	-	-	-					-
		2.73	-	-	3.35	-	-	2.73		-	3.35		
-		-	<5%	-	-	-		-	<5%	-	5.55		-
-		-	C	-	-	-		-	C	-		-	-
-	-	-	3.48	-	-	-		-	3.48	-		-	
-	-	-	24.4	-	-	-	-	-	24.4	-	-	-	
-	-	-	367.0	-	-	-	-	-	367.0	-	-	-	
	-	-	495	-	-			-	495	-		_	
-	-	-	495	-	-	-	-	-	1.36	-	-	-	
					-						-		
-	-		0.0162	-		-	-		0.0162 0.0161	-		-	-
	-			-		-				-			-
-	-	-	5.2	-	-	-	-	-	5.2	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-

Table 10. Monitoring Year 4 Stream Summary

Upper Silver Creek Restoration Project: DMS Project ID No. 94645 Reference Reach Data Regional Curve Interval ¹ Pre-Existing Condition¹ Design As-built MY1 MY2 Min Mean Med Max SD n Min Mean Med Max NC Mtn./NC Pied. Rural n Min Mean Med Max n Min Mean Med Max SD n Min Mean Med Max S 1 - 5.8 - - - 1 - 4.7 - n Min Mean Med Max SD BF Width (1 6.0 3.1 3.4 6.0 6.6 Floodprone Width (f BF Mean Depth (f 60.0 120.0 0.50 0.40 0.60 0.90 0.90 0.41 0.4 0.3 BF Max Depth (1.4 1.35 0.6 0.6 1.5 14.5 8.7 2.6 2.6 BF Cross-sectional Area 6.5 Width/Depth Ra 3.0 20.0 Bank Height Rat 2.4 1.1 2.2 29.3 1.0 9.5 1.2 13.6 3.0 18.0 d50 (i
 30.4
 32.6
 32.2
 35.3
 2.02
 3

 14.3
 15.5
 14.4
 17.7
 1.58
 3

 2.17
 2.34
 2.18
 2.68
 0.24
 3

 52.1
 54.9
 54.9
 57.6
 2.8
 2

 7.9
 8.3
 8.3
 8.7
 0.4
 2

 30.4
 32.6
 32.2
 35.3
 2.02
 3
 30.4
 32.6
 32.2
 35.3
 2.02

 14.3
 15.5
 14.4
 17.7
 1.58
 3
 14.3
 15.5
 14.4
 17.7
 1.58
 3
 14.3
 15.5
 14.4
 17.7
 1.58
 3
 14.3
 15.5
 14.4
 17.7
 1.58
 3
 14.3
 15.5
 14.4
 17.7
 1.58
 3
 2.17
 2.34
 2.18
 2.68
 0.24
 3
 2.17
 2.34
 2.18
 2.68
 0.24
 3
 2.17
 2.34
 5.49
 57.6
 2.8
 2.51
 54.9
 54.9
 57.6
 2.
 7.9
 8.3
 8.7
 0.4
 2
 7.9
 8.3
 8.7
 0.4
 30.0 18.0 3.0 72.0 12.0 Channel Beltwidth (- -22.0 - - -Radius of Curvature (f Rc:Bankfull width (ft/f Meander Wavelength (f Meander Width Rati - 75.0 - 1.2 45.0 42.0 1.2 7.0 Riffle Length (f Riffle Slope (ft/f
 13.6
 20.8
 14.3
 47.8
 13.5
 5

 0.0000
 0.0131
 0.0147
 0.0214
 0.0081
 5

 8.7
 14.5
 15.1
 17.6
 2.6
 9
 8.5
 21.0
 13.2
 57.3
 10

 0.0000
 0.0130
 0.0129
 0.0230
 0.0072
 9
 0.0000
 0.0132
 0.0152
 0.0235
 0.0
 0.057 0.013 0.054 .014 0.014 0.033 Pool Length 12.7 51.0 17.4 26.0 30.0
 7.5
 17.3
 15.6
 28.8
 8.0
 8

 14.8
 28.8
 25.2
 47.9
 11.5
 8
 39.9 62.3 Pool Spacing Pool Max Depth (9.0 1.4 Pool Volume (ransport Parameters Ri% / Ru% / P% / G% / S% SC% / Sa% / G% / B% / Be% d16 / d35 / d50 / d84 / d95 -0.3 / 9.5 / 13.6 / 29.2 / 56.0 /43/6 0.2 / 16.4 / 29.3 / 85.0 / 139.4 0.8 / 6.9 / 9.5 / 20.5 / 44. Reach Shear Stress (competency) Max part size (mm) mobilized at ban 0.3 0.6 (Rosgen Cu Stream Power (transport capacity) W/r ional Reach Parameters 45.0 51.0 28.5 33.0 0.05 < <5% G/B³ 3.35 Drainage Area (S ious cover estimate 0.12 <5% 0.05 - -2.73 - <5% 2.73 - <5% 2.73 - <5% 0.05 0.05 - 3.35 - 3.35 -E/Bc Cb, C Rosgen Classificat C 2.98 С C 2.92 BF Velocity (f - 18 BF Discharge (10.0 248.0 8.0 248.0 6.4 248.0 6.4 248.0 - 194 Valley Leng Channel length (ft 209 134.5 333 310 310 310 1.08 Simuosi Water Surface Slope (Channel) (ft/ft BF slope (ft/ft Bankfull Floodplain Area (acres BEHI VL% / L% / M% / M% / VM% / E% Channel Stability or Habitat Metri Channel Stability or Habitat Metri 0.0101 0.0198 0.0077 0.0175 - 5.2 0.01 - 0.024 0.17 0.0197 0.0070 0.02 0.02 0.0310 0.0241 0.0241 0.0272 0.0203 0.0203 aman, WA, DE Warris, MA Water, MO Cantell, M Clemons, GD. Jennings, D.R. Chinon, J.M. Patterson, D.R. Chinon, J.M. Patterson, D.R. Chinon, J.M. Patterson, D.R. Chinon, J.M. Patterson, 2000. Bankfull Regional Curves for North Canton and Warris, MA Cantell, M Clemons, GD. Jennings, D.R. Chinon, J.M. Patterson, 2000. Bankfull Regional Curves for North Canton P. Potvondy, eds. American Water Re 9. Bozeman, MT. nents. Anchorage, Alaska reams. In: AWRA Con nee Proceedings, D.L. Kane, editor. American Water Resources Specialty Conference on Water Resources in Extreme Reference Reach Data Regional Curve Interval¹ Pre-Existing Condition MY1 MY2 n Min Mean Med Max As-buil Gauge Design Min Mean Med Max SD nsion and Substrate - Riffle NC Mtn./NC Pied. Rural Min Mean Med Max SD
 n
 Min
 Mean
 Med
 Max
 SD
 n
 Min
 Mean
 Med
 Max
 <thMax</th>
 Max
 <thMax</th>
 n Min Mean Med Max SD n - 8.1 8.8 8.2 10.1 0.91 3 - >150 - - - -8.0 BF Width (9.8 5.5 0.1
19.0 Eloodprone Width 48.0 0.7 0.8 0.9 0.10 0.7 0.7 0.7 0.05 0.7 0.7 0 BF Mean Depth 0.6 0.8 0.8 0.8 0.6 0.90 0.5 0.7 BF Max Depth (2.0 5.93 1.4 BF Cross-sectional Area (ft Width/Depth Rati 6.4 6.3 6.5 6.0 2.4 5 11.7 8.9 Entrenchment Rat 9.1 1.9 3.0 Bank Height Rat 1.0 2.4 1.0 1.0 1.1 0 1.1 1.1 1.2 0.08 3 31.2 - - - -1.0 16.0 d50 (i
 36.4
 47.0
 48.4
 57.7
 7.21
 7
 36.4
 47.0
 48.4
 57.7
 7.21
 7
 36.4
 47.0
 48.4
 57.7
 7.21
 7
 36.4
 47.0
 48.4
 57.7
 7.21
 7
 36.4
 47.0
 48.4
 57.7
 7.21
 7
 36.4
 47.0
 48.4
 57.7
 7

 14.0
 18.8
 19.4
 25.1
 3.72
 7
 14.0
 18.8
 19.4
 25.1
 3.72
 7
 14.0
 18.8
 19.4
 25.1
 3.72
 7
 14.0
 18.8
 19.4
 25.1
 3.72
 7
 14.0
 18.8
 19.4
 25.1
 3.72
 7
 14.0
 18.8
 19.4
 25.1
 3.2
 2.9
 0.42
 7
 1.6
 2.1
 2.2
 2.9
 0.42
 7
 1.6
 2.1
 2.2
 2.9
 0.6

 63.5
 74.9
 71.7
 94.2
 10.30
 7
 63.5
 74.9
 71.7
 Channel Beltwidth (ft Radius of Curvature (ft Rc:Bankfull width (ft/ft 94.0 30.0 6.7 56.0 21.0 3.0 25.0 -13.0 -44.0 --- -- -11.0 75.0 Meander Wavelength 72.0 12.8 45.0 49.0 84.0 12.0 Meander Width Ra 10.5 7.0 85 81 107 117 .2 8.5 8.1 10.7 1.17 2 85 81 107
 108
 24.3
 21.0
 65.2
 12.20
 15
 11.4
 27.2
 26.7
 64.5
 1

 0.007
 0.022
 0.019
 0.038
 0.010
 15
 0.007
 0.021
 0.017
 0.070
 0

 15.0
 25.6
 26.1
 39.9
 7.30
 17
 13.5
 22.8
 23.5
 34.4
 6

 32.7
 52.2
 48.6
 95.3
 13.60
 17
 22.6
 50.0
 48.5
 94.5
 1

 1.6
 1.7
 1.7
 1.9
 0.15
 2.0
 1.2
 1.4
 1.4
 1.7
 0

 13.1
 21.1
 20.6
 28.2
 4.50
 11

 0.004
 0.016
 0.017
 0.025
 0.01
 11

 18.4
 26.4
 25.8
 33.5
 5.00
 11

 36.3
 49.0
 47.7
 60.7
 7.30
 15
 Riffle Length (f Riffle Slope (ft/ff Pool Length (f Pool Spacing (ff Pool Max Depth (ff 0.054 26 62.3 0.031 65.0 0.022 40.0 0.013 0.016 20.0 005 42.0 2.8 140.0 1.8 1.7 2.0 2.0 2.2 0.21 2 1.8 1.8 1.8 1.6 Pool Volume (and Transport Parameters Ri% / Ru% / P% / G% / S SC% / Sa% / G% / B% / Bc d16 / d35 / d50 / d84 / d5 - - - -- ---- -- - -- -1.0 / 8.4 / 17 / 43 / 5 0.3 / 12.2 / 20.4 / 60.5 / 86 0.4 / 11.5 / 16.4 / 61.1 / 84.2

Reach Shear Stress (competency) lb/i Max part size (mm) mobilized at bankful 0.55 0.2 -0.6 0.8 - 0.6 (Rosgen Cur 37.0 25.0 45.0 28.5 Stream Power (transport capacity) W/ tional Reach Parameters Drainage Area (0.14 - -- <5% -F -0.14 -- <5% E 0.14 - - <5% 0.14 - <5% 0.17 0.12 0.14 - <5% 0.17 0.17 0.17 - 0.17 -0.17 Impervious cover estimate (% Rosgen Classificatio BF Velocity (fp E/Bc E E 26.0 24.0 15 BF Discharge (c 23 1015 16.8 16.8 Valley Lengt 1002 Channel length (ft 135 1348 1348 1348 - 1210 1332 1.33 Water Surface Slope (Channel) (ft/f 0.015 0.020 0.013 0.013 0.0128 0.0128 - 0.012 - 0.2 BF slope (ft/ 0.013 0.013 0.013 0.013 Bankfull Floodplain Area (ac --BEHI VL% / L% / M% / H% / VH% / E Channel Stability or Habitat Metr Biological or Othe

Harman, W.A., GD. Jennings, JM. Pattersen, D.R. Clinton, L.O. State, A.G. Jessep, J.R. Everhart, and R.E. Smith. 1999. Bankful legenerary relationships for North Carolina streams. Waldland Hydrology, AWRA Symposium Proceedings. D S. Olsen and J.P. Potyody, eds: Sharie's Marie Review of Marie Review and R

				м	¥3					М	¥4		
SD	n	Min	Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD	n
-	1	-	5.5	-	-	-	1	-	5.55	-	-	-	1
-	1	-	>100	-	-	-	1	-	>100	-	-	-	1
-	1	-	0.4	-	-	-	1	-	0.31	-	-	-	1
-	1	-	0.7	-	-	-	1	-	0.80	-	-	-	1
1	1	-	2.0	-	-	-	1	-	1.72	-	-	-	1
	1		14.8	-	-	-	1	-	17.90	-	-	-	1
-	1	-	12.3	-	-	-	1	-	8.30	-	-	-	1
-	1	-	1.30	-	-	-	1	-	0.97	-	-	-	1
-	1	-	-	-	-	-	1	-	10.10	-	-	-	1
2.02	3	30.4	32.6	32.2	35.3	2.02	3	30.40	32.63	32.20	35.30	2.02	3
1.58	3	14.3	15.5	14.4	17.7	1.58	3	14.30	15.47	14.40	17.70	1.58	3
0.24	3	2.17	2.34	2.18	2.68	0.24	3	2.17	2.34	2.18	2.68	0.24	3
2.8	2	52.1	54.9	54.9	57.6	2.8	2	52.10	54.85	54.85	57.60	2.75	2
0.4	2	7.9	8.3	8.3	8.7	0.4	2	7.89	8.31	8.31	8.73	0.42	2
			r	r					r		r		
16.3	8	7.2	15.8	11.6	42.8	12.3	6	7.68	19.00	14.45	46.89	13.00	6
.0068	8	0.0013	0.0279	0.0120	0.1117	0.0381	6	0.00	0.01	0.01	0.02	0.01	6
5.5	8	7.2	22.5	23.0	38.7	8.5	8	5.20	15.40	12.42	42.85	11.70	8
10.9	9	7.7	34.4	29.5	72.6	18.9	9	7.60	28.44	25.29	58.73	14.92	9
-	1	-	0.6	-	-	-	8	0.21	0.49	0.48	0.83	0.17	9
-	-	-	-	-	-	-	-	-	-	-	-	-	-
		-	-	-	-	-	-		-	-	-	-	
-	-	-	-	-	-	-	-	-	-	-	-	-	-
				-/-/-	/ - / 45				.5/	4.3/10.1	/ 29.5 / 10	1.1	
-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	
	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	2.73	-	-	3.35	-	-	2.73	-	-	3.35	-	-
-	-	-	<5%	-	-	-	-	-	<5%	-	-	-	-
		-	С	-		-		-	С	-	-	-	
	-	-	2.92	-	-	-	-	-	2.92	-	-	-	-
	-	-	6.4	-	-	-	-	-	6.4	-	-	-	-
-	-	-	248.0	-	-	-	-	-	248.0	-	-	-	-
-	-	-	310	-	-	-	-	-	310	-	-	-	-
-	-	-		-	-	-	-	-		-	-	-	-
-	-	-	0.0241	-	-	-	-	-	0.0241	-	-	-	-
-	-	-	0.0203	-	-	-	-	-	0.0203	-	-	-	-
-	-	-	5.2	-	-	-	-	-	5.2	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-

					¥3						Y4		
SD	n	Min	Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD	n
.85	3	7.3	8.1 >150	7.6	9.3	0.87	3	7.3	7.9 >150	7.8	8.5	0.48	3
-	3	-		-	- 0.7	- 0.09		-		- 0.5	-	-	3
		0.5	0.6	0.6			3	0.4	0.5		0.7	0.10	
0.03	3	0.9	1.0	1.1	1.1	0.11	3	0.9	1.0	1.1	1.1	0.09	3
0.45	3	4.4	4.8	4.6	5.3	0.37	3	3.6	4.1	3.7	4.9	0.56	3
.75	3	10.13	13.9	13.1	18.56 9.4	3.49	3	11.12 6.3	15.79	16.93 6.8	19.32 9.4	3.44	3
.55		5.8		6.9	9.4				0.9				3
-	3	1.1	0.3	1.2	1.2	0.05	3	0.9		1.0	1.0	0.05	
-		-	0.5	-	-	-	-	-	39.84	-	-	-	-
		26.4	47.0	40.4	63.3	7.01	-	26.4	47.0	40.4	62.2	7.01	
7.21 1.72	7	36.4	47.0 18.8	48.4	57.7	7.21	7	36.4 14.0	47.0 18.8	48.4 19.4	57.7	7.21	7
0.72			2.1		25.1	3.72			2.1	2.2	25.1 2.9	3.72	7
	7	1.6		2.2		0.42	7	1.6				0.42	7
0.30	7	63.5	74.9	71.7	94.2	10.30	7	63.5	74.9	71.7	94.2	10.30	7
.17	7	7.2	8.5	8.1	10.7	1.17	7	7.2	8.5	8.1	10.7	1.17	7
1.8	18	10.3	25.9	21.6	58.5	11.6	17	8.8	21.5	22.0	40.5	10.6	1
.014	18	0.000	0.016	0.013	0.051	0.014	17	0.005	0.020	0.018	0.055	0.015	1
.23	18	7.6	28.5	28.8	60.5	13.90	17	7.4	22.1	19.4	44.5	9.09	1
										19.4 39.9			
4.98	17	33.6 0.3	50.3	48.1	86.2	13.20	17	18.8	48.0		117.5	23.76	17
-			0.9	0.8	1.6	0.40	17	0.4	0.6	0.6	0.8	0.14	1'
-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-		-	-	-	-	-	-	-	-	-	-	-
			0.14	/ .25 / .34	/ 45.52 / 7.	3.35			12.86/2	20.39 / 39.	84 / 67.76 /	136.57	
-		-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-
										-			
-	-	0.14	-	-	0.17	-	-	0.14	-	-	0.17	-	-
-	-	-	<5%	-	-	-	-	-	<5%	-	-	-	-
-	-	-	E	-	-	-	-	-	E	-	-	-	-
-	-	-	3.17	-	-	-	-	-	3.17	-	-	-	-
-	-	-	16.8	-	-	-	-	-	16.8	-	-	-	-
-	-	-	1015	-	-	-	-	-	1015	-	-	-	-
-	-	-	1348	-	-	-	-	-	1348	-	-	-	-
-	-	-	1.33	-	-	-	-	-	1.33	-	-	-	-
-	-	-	0.0128	-	-	-	-	-	0.0128	-	-	-	-
-	-	-	0.013	-	-	-	-	-	0.013	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	
-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-

Table 11. Morphology and Hydraulic Monitoring Summary

Upper Silver Creek Restoration Project: DMS Project ID No. 94645

Silver Creek (3,016 LF)																											
		(Cross-section	X-1, Station	2724.3 (Riff	fle)				Cross-sectior	n X-2, Station	2636.7 (Pool))			(Cross-section	X-3, Station	1898.2 (Pool)			(Cross-section	X-4, Station	1793.8 (Riff	e)	
Dimension and substrate	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4 MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Based on fixed baseline bankfull elevation																											
BF Width (ft)	29.06	24.58	24.91	24.91	20.28			35.67	29.50	34.01	34.54	33.02			43.45	39.50	42.01	39.84	38.31		23.81	23.50	23.52	24.00	37.72		
BF Mean Depth (ft)	1.69	1.76	1.81	1.68	1.89			1.63	1.76	1.46	1.51	1.55			1.72	1.45	1.19	1.17	1.14		2.01	1.89	1.75	1.75	1.11		
Width/Depth Ratio	17.16	13.90	13.77	14.83	10.73			21.82	16.76	23.30	22.87	21.30			25.20	27.30	35.15	34.05	33.61		11.82	12.44	13.46	13.71	33.98		
BF Cross-sectional Area (ft ²)	49.20	43.40	45.00	41.90	38.27			58.30	51.90	49.60	52.03	51.28			74.90	57.30	50.20	46.81	43.51		48.00	44.20	41.10	41.90	41.81		
BF Max Depth (ft)	3.04	2.92	3.24	3.11	3.39			3.98	3.92	4.32	4.48	5.24			5.16	4.00	3.95	3.81	3.61		3.34	3.22	3.08	3.13	3.17		
Width of Floodprone Area (ft)	>300	>300	>300	>300	>300			>300	>300	>300	>300	>300			>300	>300	>300	>300	>300		>300	>300	>300	>300	>300		
Entrenchment Ratio	3.30	3.90	3.80	3.85	4.87			2.50	3.00	2.60	2.55	2.67			2.10	2.30	2.20	2.27	2.36		3.70	3.70	3.70	3.63	2.31		
Bank Height Ratio	1.10	1.00	1.10	1.06	1.00			1.00	1.00	1.00	1.00	0.98			0.70	0.70	0.90	1.07	0.93		1.00	1.00	1.00	1.02	0.95		
Wetted Perimeter (ft)	32.44	28.10	28.53	28.27	22.63			38.93	33.02	36.93	37.56	37.84			46.89	42.40	44.39	42.18	40.68		27.83	27.28	27.02	27.50	39.65		
Hydraulic Radius (ft)	1.52	1.54	1.58	1.48	1.69			1.50	1.57	1.34	1.39	1.36			1.60	1.35	1.13	1.11	1.07		1.72	1.62	1.52	1.52	1.05		
Fixed baseline bankfull elevation	1197.40	1197.40	1197.40	1197.38	1197.38			1198.20	1198.20	1198.20	1198.20	1198.20			1202.34	1202.34	1202.34	1202.34	1202.34		1203.00	1203.00	1203.01	1203.01	1203.01		
Based on current/developing bankfull feature																											
based on current/developing bankfun feature																											
BF Width (ft)	29.06	26.22	26.20	-	-			35.67	29.50	35.29	-	-			43.45	42.55	42.01	-	-		23.81	23.50	23.52	-	-		
BF Mean Depth (ft)	1.69	1.72	1.82	-	-			1.63	1.76	1.50	-	-			1.72	1.45	1.19	-	-		2.01	1.89	1.75	-	-		
Width/Depth Ratio	17.16	15.23	14.40	-	-			21.82	16.76	23.50	-	-			25.20	29.31	35.15	-	-		11.82	12.44	13.46	-	-		
BF Cross-sectional Area (ft ²)	49.20	45.10	47.60	-	-			58.30	51.90	53.09	-	-			74.90	61.80	50.20	-	-		48.00	44.20	41.10	-	-		
BF Max Depth (ft)	3.04	2.99	3.34	-	-			3.98	3.92	4.42	-	-			5.16	4.15	3.95	-	-		3.34	3.22	3.08	-	-		
Width of Floodprone Area (ft)	>300	>300	>300	-	-			>300	>300	>300	-	-			>300	>300	>300	-	-		>300	87.26	>300	-	-		
Entrenchment Ratio	3.30	3.70	>3.70	-	-			2.50	3.00	>2.50	-	-			2.10	2.10	2.20	-	-		3.70	3.70	3.70	-	-		
Bank Height Ratio	1.10	1.00	1.00	-	-			1.00	1.00	1.00	-	-			0.70	0.70	0.90	-	-		1.00	1.00	1.00	-	-		
Wetted Perimeter (ft)	32.44	29.66	29.84	-	-			38.93	33.02	38.29	-	-			46.89	45.45	44.39	-	-		27.83	27.28	27.02	-	-		
Hydraulic Radius (ft)	1.52	1.52	1.60	-	-			1.50	1.57	1.39	-	-			1.60	1.36	1.13	-	-		1.72	1.62	1.52	-	-		
Cross Sectional Area between end pins (ft ²)	-	-	-	-	-			-	-	-	-	-			-	-	-	-	-		-	-	-	-	-		
d50 (mm)	-	-	-	-	-			-	-	-	-	-			-	-	-	-	-		36.60	41.30	25.10	27.80	28.00		
* Corrected from baseline report.																											
· Coffected from baseline report.																											
· Corrected from baseline report.		(Cross-section	X-5, Station	1206.9 (Riff	fle)				Cross-section	n X-6, Statior	n 357.2 (Pool)					Cross-sectior	n 7, Station 3	302.5 (Riffle)								
Dimension and substrate	Base	MY1	Cross-section MY2	X-5, Station MY3	1206.9 (Riff MY4	fle) MY5	MY+	Base	MY1	Cross-section MY2	n X-6, Statior MY3	MY4	MY5	MY+	Base	MY1	Cross-section MY2	n 7, Station 3 MY3	302.5 (Riffle) MY4 MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
i	Base			- ,	(MY+	Base	MY1		.,	()	MY5	MY+	Base			.,		MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Dimension and substrate	Base 28.43			- ,	(MY+	Base 43.48	MY1 41.92		.,	()	MY5	MY+	Base 26.61			.,		MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Dimension and substrate Based on fixed baseline bankfull elevation		MY1	MY2	MY3	MY4		MY+			MY2	MY3	MY4	MY5	MY+		MY1	MY2	MY3	MY4 MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Dimension and substrate Based on fixed baseline bankfull elevation BF Width (ft)	28.43	MY1 26.08	MY2 25.21	MY3	MY4 25.02		MY+	43.48	41.92	MY2 34.57	MY3 35.96	MY4 44.93	MY5	MY+	26.61	MY1 25.90	MY2 25.80	MY3 25.75	MY4 MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Dimension and substrate Based on fixed baseline bankfull elevation BF Width (ft) BF Mean Depth (ft)	28.43 1.65	MY1 26.08 1.66	MY2 25.21 1.68	MY3 25.01 1.66	MY4 25.02 1.58		MY+	43.48 1.84	41.92 1.75	MY2 34.57 1.69	MY3 35.96 1.59	MY4 44.93 1.53	MY5	MY+	26.61 2.05	MY1 25.90 1.95	MY2 25.80 1.84	MY3 25.75 1.80	MY4 MY5 22.23 1.67	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Dimension and substrate Based on fixed baseline bankfull elevation BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio	28.43 1.65 17.25	MY1 26.08 1.66 15.69	MY2 25.21 1.68 15.04 42.30 2.80	MY3 25.01 1.66 15.07	MY4 25.02 1.58 15.84 39.53 2.75		MY+	43.48 1.84 23.59	41.92 1.75 23.92	MY2 34.57 1.69 20.50 58.30 3.78	MY3 35.96 1.59 22.62	MY4 44.93 1.53 29.37	MY5	MY+	26.61 2.05 12.98	MY1 25.90 1.95 13.26	MY2 25.80 1.84 14.00	MY3 25.75 1.80 14.31 46.23 3.20	MY4 MY5 22.23 1.67 13.31	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Dimension and substrate Based on fixed baseline bankfull elevation BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft ²)	28.43 1.65 17.25 46.90	MY1 26.08 1.66 15.69 43.40	MY2 25.21 1.68 15.04 42.30 2.80 >300	MY3 25.01 1.66 15.07 41.56	MY4 25.02 1.58 15.84 39.53 2.75 >300		MY+	43.48 1.84 23.59 80.10	41.92 1.75 23.92 73.50	MY2 34.57 1.69 20.50 58.30 3.78 >300	MY3 35.96 1.59 22.62 57.16	MY4 44.93 1.53 29.37 68.54	MY5	MY+	26.61 2.05 12.98 54.50 3.30 >300	MY1 25.90 1.95 13.26 50.60	MY2 25.80 1.84 14.00 47.60	MY3 25.75 1.80 14.31 46.23	MY4 MY5 22.23 1.67 13.31 37.16	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Dimension and substrate Based on fixed baseline bankfull elevation BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft ²) BF Max Depth (ft) Width of Floodprone Area (ft) Entrenchment Ratio	28.43 1.65 17.25 46.90 2.91 >300 3.10	MY1 26.08 1.66 15.69 43.40 2.81 >300 3.30	MY2 25.21 1.68 15.04 42.30 2.80 >300 3.50	MY3 25.01 1.66 15.07 41.56 2.77 >300 3.48	MY4 25.02 1.58 15.84 39.53 2.75 >300 3.49		MY+	43.48 1.84 23.59 80.10 5.25 >300 1.60	41.92 1.75 23.92 73.50 4.98 >300 1.60	MY2 34.57 1.69 20.50 58.30 3.78 >300 2.00	MY3 35.96 1.59 22.62 57.16 4.63 >300 1.89	MY4 44.93 1.53 29.37 68.54 3.75 >300 1.51	MY5	MY+	26.61 2.05 12.98 54.50 3.30 >300 4.80	MY1 25.90 1.95 13.26 50.60 3.15 >300 4.90	MY2 25.80 1.84 14.00 47.60 2.95 >300 4.90	MY3 25.75 1.80 14.31 46.23 3.20 >300 4.93	MY4 MY5 22.23 1.67 13.31 37.16 3.04 >300 5.71 5.71	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Dimension and substrate Based on fixed baseline bankfull elevation BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft ²) BF Max Depth (ft) Width of Floodprone Area (ft) Entrenchment Ratio Bank Height Ratio	28.43 1.65 17.25 46.90 2.91 >300 3.10 1.00	MY1 26.08 1.66 15.69 43.40 2.81 >300 3.30 1.00	MY2 25.21 1.68 15.04 42.30 2.80 >300 3.50 1.00	MY3 25.01 1.66 15.07 41.56 2.77 >300 3.48 1.01	MY4 25.02 1.58 15.84 39.53 2.75 >300 3.49 0.97		MY+	43.48 1.84 23.59 80.10 5.25 >300 1.60 1.00	41.92 1.75 23.92 73.50 4.98 >300 1.60 0.90	MY2 34.57 1.69 20.50 58.30 3.78 >300 2.00 1.00	MY3 35.96 1.59 22.62 57.16 4.63 >300 1.89 1.01	MY4 44.93 1.53 29.37 68.54 3.75 >300 1.51 0.94	MY5	MY+	26.61 2.05 12.98 54.50 3.30 >300 4.80 1.00	MY1 25.90 1.95 13.26 50.60 3.15 >300 4.90 1.00	MY2 25.80 1.84 14.00 47.60 2.95 >300 4.90 1.00	MY3 25.75 1.80 14.31 46.23 3.20 >300 4.93 1.04	MY4 MY5 22.23 1.67 13.31 37.16 3.04 >300 5.71 1.00	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Dimension and substrate Based on fixed baseline bankfull elevation BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft ²) BF Max Depth (ft) Width of Floodprone Area (ft) Entrenchment Ratio Bank Height Ratio Wetted Perimeter (ft)	28.43 1.65 17.25 46.90 2.91 >300 3.10 1.00 31.73	MY1 26.08 1.66 15.69 43.40 2.81 >300 3.30 1.00 29.40	MY2 25.21 1.68 15.04 42.30 2.80 >300 3.50 1.00 28.57	MY3 25.01 1.66 15.07 41.56 2.77 >300 3.48 1.01 28.33	MY4 25.02 1.58 15.84 39.53 2.75 >300 3.49 0.97 26.42		MY+	43.48 1.84 23.59 80.10 5.25 >300 1.60 1.00 47.16	41.92 1.75 23.92 73.50 4.98 >300 1.60 0.90 45.42	MY2 34.57 1.69 20.50 58.30 3.78 >300 2.00 1.00 37.95	MY3 35.96 1.59 22.62 57.16 4.63 >300 1.89 1.01 39.14	MY4 44.93 1.53 29.37 68.54 3.75 >300 1.51 0.94 48.74	MY5	MY+	26.61 2.05 12.98 54.50 3.30 >300 4.80 1.00 30.71	MY1 25.90 1.95 13.26 50.60 3.15 >300 4.90 1.00 29.80	MY2 25.80 1.84 14.00 47.60 2.95 >300 4.90 1.00 29.48	MY3 25.75 1.80 14.31 46.23 3.20 >300 4.93 1.04 29.35	MY4 MY5 22.23 1.67 13.31 37.16 3.04 >300 5.71 1.00 24.01 24.01	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Dimension and substrate Based on fixed baseline bankfull elevation BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft ²) BF Max Depth (ft) Width of Floodprone Area (ft) Entrenchment Ratio Bank Height Ratio Wetted Perimeter (ft) Hydraulic Radius (ft)	28.43 1.65 17.25 46.90 2.91 >300 3.10 1.00 31.73 1.48	MY1 26.08 1.66 15.69 43.40 2.81 >300 3.30 1.00 29.40 1.48	MY2 25.21 1.68 15.04 42.30 2.80 >300 3.50 1.00 28.57 1.48	MY3 25.01 1.66 15.07 41.56 2.77 >300 3.48 1.01 28.33 1.47	MY4 25.02 1.58 15.84 39.53 2.75 >300 3.49 0.97 26.42 1.50		MY+	$\begin{array}{c} & 43.48 \\ 1.84 \\ 23.59 \\ 80.10 \\ 5.25 \\ >300 \\ 1.60 \\ 1.00 \\ 47.16 \\ 1.70 \end{array}$	$\begin{array}{c} 41.92\\ 1.75\\ 23.92\\ 73.50\\ 4.98\\ >300\\ 1.60\\ 0.90\\ 45.42\\ 1.70\\ \end{array}$	MY2 34.57 1.69 20.50 58.30 3.78 >300 2.00 1.00 37.95 1.54	MY3 35.96 1.59 22.62 57.16 4.63 >300 1.89 1.01 39.14 1.46	MY4 44.93 1.53 29.37 68.54 3.75 >300 1.51 0.94 48.74 1.41	MY5	MY+	26.61 2.05 12.98 54.50 3.30 >300 4.80 1.00 30.71 1.77	MY1 25.90 1.95 13.26 50.60 3.15 >300 4.90 1.00 29.80 1.70	MY2 25.80 1.84 14.00 47.60 2.95 >300 4.90 1.00 29.48 1.61	MY3 25.75 1.80 14.31 46.23 3.20 >300 4.93 1.04 29.35 1.58	MY4 MY5 22.23 1.67 13.31 37.16 3.04 >300 5.71 1.00 24.01 1.55	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Dimension and substrate Based on fixed baseline bankfull elevation BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft ²) BF Max Depth (ft) Width of Floodprone Area (ft) Entrenchment Ratio Bank Height Ratio Wetted Perimeter (ft)	28.43 1.65 17.25 46.90 2.91 >300 3.10 1.00 31.73	MY1 26.08 1.66 15.69 43.40 2.81 >300 3.30 1.00 29.40 1.48	MY2 25.21 1.68 15.04 42.30 2.80 >300 3.50 1.00 28.57 1.48	MY3 25.01 1.66 15.07 41.56 2.77 >300 3.48 1.01 28.33	MY4 25.02 1.58 15.84 39.53 2.75 >300 3.49 0.97 26.42 1.50		MY+	43.48 1.84 23.59 80.10 5.25 >300 1.60 1.00 47.16	$\begin{array}{c} 41.92\\ 1.75\\ 23.92\\ 73.50\\ 4.98\\ >300\\ 1.60\\ 0.90\\ 45.42\\ 1.70\\ \end{array}$	MY2 34.57 1.69 20.50 58.30 3.78 >300 2.00 1.00 37.95	MY3 35.96 1.59 22.62 57.16 4.63 >300 1.89 1.01 39.14 1.46	MY4 44.93 1.53 29.37 68.54 3.75 >300 1.51 0.94 48.74	MY5	MY+	26.61 2.05 12.98 54.50 3.30 >300 4.80 1.00 30.71	MY1 25.90 1.95 13.26 50.60 3.15 >300 4.90 1.00 29.80	MY2 25.80 1.84 14.00 47.60 2.95 >300 4.90 1.00 29.48	MY3 25.75 1.80 14.31 46.23 3.20 >300 4.93 1.04 29.35	MY4 MY5 22.23 1.67 13.31 37.16 3.04 >300 5.71 1.00 24.01 1.55	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Dimension and substrate Based on fixed baseline bankfull elevation BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft ²) BF Max Depth (ft) Width of Floodprone Area (ft) Entrenchment Ratio Bank Height Ratio Wetted Perimeter (ft) Hydraulic Radius (ft) Fixed baseline bankfull elevatior	28.43 1.65 17.25 46.90 2.91 >300 3.10 1.00 31.73 1.48	MY1 26.08 1.66 15.69 43.40 2.81 >300 3.30 1.00 29.40 1.48	MY2 25.21 1.68 15.04 42.30 2.80 >300 3.50 1.00 28.57 1.48	MY3 25.01 1.66 15.07 41.56 2.77 >300 3.48 1.01 28.33 1.47	MY4 25.02 1.58 15.84 39.53 2.75 >300 3.49 0.97 26.42 1.50		MY+	$\begin{array}{c} & 43.48 \\ 1.84 \\ 23.59 \\ 80.10 \\ 5.25 \\ >300 \\ 1.60 \\ 1.00 \\ 47.16 \\ 1.70 \end{array}$	$\begin{array}{c} 41.92\\ 1.75\\ 23.92\\ 73.50\\ 4.98\\ >300\\ 1.60\\ 0.90\\ 45.42\\ 1.70\\ \end{array}$	MY2 34.57 1.69 20.50 58.30 3.78 >300 2.00 1.00 37.95 1.54	MY3 35.96 1.59 22.62 57.16 4.63 >300 1.89 1.01 39.14 1.46	MY4 44.93 1.53 29.37 68.54 3.75 >300 1.51 0.94 48.74 1.41	MY5	MY+	26.61 2.05 12.98 54.50 3.30 >300 4.80 1.00 30.71 1.77	MY1 25.90 1.95 13.26 50.60 3.15 >300 4.90 1.00 29.80 1.70	MY2 25.80 1.84 14.00 47.60 2.95 >300 4.90 1.00 29.48 1.61	MY3 25.75 1.80 14.31 46.23 3.20 >300 4.93 1.04 29.35 1.58	MY4 MY5 22.23 1.67 13.31 37.16 3.04 >300 5.71 1.00 24.01 1.55	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Dimension and substrate Based on fixed baseline bankfull elevation BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft ²) BF Max Depth (ft) Width of Floodprone Area (ft) Entrenchment Ratio Bank Height Ratio Wetted Perimeter (ft) Hydraulic Radius (ft) Fixed baseline bankfull elevatior Based on current/developing bankfull feature	28.43 1.65 17.25 46.90 2.91 >300 3.10 1.00 31.73 1.48 1208.80	MY1 26.08 1.66 15.69 43.40 2.81 >300 3.30 1.00 29.40 1.48 1208.80	MY2 25.21 1.68 15.04 42.30 2.80 >300 3.50 1.00 28.57 1.48 1208.80	MY3 25.01 1.66 15.07 41.56 2.77 >300 3.48 1.01 28.33 1.47 1208.82	MY4 25.02 1.58 15.84 39.53 2.75 >300 3.49 0.97 26.42 1.50		MY+	43.48 1.84 23.59 80.10 5.25 >300 1.60 1.00 47.16 1.70 1208.14	$\begin{array}{c} 41.92\\ 1.75\\ 23.92\\ 73.50\\ 4.98\\ >300\\ 1.60\\ 0.90\\ 45.42\\ 1.70\\ 1208.14\\ \end{array}$	MY2 34.57 1.69 20.50 58.30 3.78 >300 2.00 1.00 37.95 1.54 1208.14	MY3 35.96 1.59 22.62 57.16 4.63 >300 1.89 1.01 39.14 1.46 1208.14	MY4 44.93 1.53 29.37 68.54 3.75 >300 1.51 0.94 48.74 1.41 1208.14	MY5	MY+	26.61 2.05 12.98 54.50 3.30 4.80 1.00 30.71 1.77 1208.23	MY1 25.90 1.95 13.26 50.60 3.15 >300 4.90 1.00 29.80 1.70 1208.23	MY2 25.80 1.84 14.00 47.60 2.95 >300 4.90 1.00 29.48 1.61 1208.23	MY3 25.75 1.80 14.31 46.23 3.20 >300 4.93 1.04 29.35 1.58 1208.23	MY4 MY5 22.23 1.67 13.31 37.16 37.16 3.04 >300 5.71 1.00 24.01 1.55 1208.23	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Dimension and substrate Based on fixed baseline bankfull elevation BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft ²) BF Max Depth (ft) Width of Floodprone Area (ft) Entrenchment Ratio Bank Height Ratio Wetted Perimeter (ft) Hydraulic Radius (ft) Fixed baseline bankfull elevatior Based on current/developing bankfull feature BF Width (ft)	28.43 1.65 17.25 46.90 2.91 >300 3.10 1.00 31.73 1.48 1208.80 28.43	MY1 26.08 1.66 15.69 43.40 2.81 >300 3.30 1.00 29.40 1.48 1208.80 26.08	MY2 25.21 1.68 15.04 42.30 2.80 3.50 1.00 28.57 1.48 1208.80 25.75	MY3 25.01 1.66 15.07 41.56 2.77 >300 3.48 1.01 28.33 1.47 1208.82	MY4 25.02 1.58 15.84 39.53 2.75 >300 3.49 0.97 26.42 1.50 1204.82		MY+	$\begin{array}{c} 43.48\\ 1.84\\ 23.59\\ 80.10\\ 5.25\\ >300\\ 1.60\\ 1.00\\ 47.16\\ 1.70\\ 1208.14\\ \end{array}$	41.92 1.75 23.92 73.50 4.98 >300 1.60 0.90 45.42 1.70 1208.14 41.92	MY2 34.57 1.69 20.50 58.30 3.78 >300 2.00 1.00 37.95 1.54 1208.14 34.57	MY3 35.96 1.59 22.62 57.16 4.63 >300 1.89 1.01 39.14 1.46 1208.14	MY4 44.93 1.53 29.37 68.54 3.75 >300 1.51 0.94 48.74 1.41 1208.14	MY5	MY+	26.61 2.05 12.98 54.50 3.30 4.80 1.00 30.71 1.77 1208.23 26.61	MY1 25.90 1.95 13.26 50.60 3.15 >300 4.90 1.00 29.80 1.70 1208.23 25.90	MY2 25.80 1.84 14.00 47.60 2.95 >300 4.90 1.00 29.48 1.61 1208.23 26.80	MY3 25.75 1.80 14.31 46.23 3.20 >300 4.93 1.04 29.35 1.58 1208.23	MY4 MY5 22.23 1.67 13.31 37.16 3.04 >300 5.71 1.00 24.01 1.55 1208.23 -	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Dimension and substrate Based on fixed baseline bankfull elevation BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft ²) BF Max Depth (ft) Width of Floodprone Area (ft) Entrenchment Ratio Bank Height Ratio Wetted Perimeter (ft) Hydraulic Radius (ft) Fixed baseline bankfull elevatior Based on current/developing bankfull feature BF Width (ft) BF Mean Depth (ft)	28.43 1.65 17.25 46.90 2.91 >300 3.10 1.00 31.73 1.48 1208.80 28.43 1.65	MY1 26.08 1.66 15.69 43.40 2.81 >300 3.30 1.00 29.40 1.48 1208.80 26.08 1.66	MY2 25.21 1.68 15.04 42.30 2.80 >300 3.50 1.00 28.57 1.48 1208.80 25.75 1.68	MY3 25.01 1.66 15.07 41.56 2.77 >300 3.48 1.01 28.33 1.47 1208.82 - -	MY4 25.02 1.58 15.84 39.53 2.75 >300 3.49 0.97 26.42 1.50 1204.82 -		MY+	$\begin{array}{c} 43.48\\ 1.84\\ 23.59\\ 80.10\\ 5.25\\ >300\\ 1.60\\ 1.00\\ 47.16\\ 1.70\\ 1208.14\\ \end{array}$	$\begin{array}{c} 41.92\\ 1.75\\ 23.92\\ 73.50\\ 4.98\\ >300\\ 1.60\\ 0.90\\ 45.42\\ 1.70\\ 1208.14\\ \end{array}$	MY2 34.57 1.69 20.50 58.30 3.78 >300 2.00 1.00 37.95 1.54 1208.14 34.57 1.69	MY3 35.96 1.59 22.62 57.16 4.63 >300 1.89 1.01 39.14 1.46 1208.14	MY4 44.93 1.53 29.37 68.54 3.75 >300 1.51 0.94 48.74 1.41 1208.14	MY5	MY+	$\begin{array}{c} 26.61 \\ 2.05 \\ 12.98 \\ 54.50 \\ 3.30 \\ >300 \\ 4.80 \\ 1.00 \\ 30.71 \\ 1.77 \\ 1208.23 \\ \hline \\ 26.61 \\ 2.05 \end{array}$	MY1 25.90 1.95 13.26 50.60 3.15 >300 4.90 1.00 29.80 1.70 1208.23 25.90 1.95	MY2 25.80 1.84 14.00 47.60 2.95 >300 4.90 1.00 29.48 1.61 1208.23 26.80 1.84	MY3 25.75 1.80 14.31 46.23 3.20 >300 4.93 1.04 29.35 1.58 1208.23	MY4 MY5 22.23 1.67 13.31 37.16 3.04 >300 5.71 1.00 24.01 1.55 1208.23 -	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Dimension and substrate Based on fixed baseline bankfull elevation BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft ²) BF Max Depth (ft) Width of Floodprone Area (ft) Entrenchment Ratio Bank Height Ratio Wetted Perimeter (ft) Hydraulic Radius (ft) Fixed baseline bankfull elevatior Based on current/developing bankfull feature BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio	$\begin{array}{c} 28.43\\ 1.65\\ 17.25\\ 46.90\\ 2.91\\ >300\\ 3.10\\ 1.00\\ 31.73\\ 1.48\\ 1208.80\\ \hline \\ 28.43\\ 1.65\\ 17.25\\ \end{array}$	MY1 26.08 1.66 15.69 43.40 2.81 >300 1.00 29.40 1.48 1208.80 26.08 1.66 15.69	MY2 25.21 1.68 15.04 42.30 2.80 >300 3.50 1.00 28.57 1.48 1208.80 25.75 1.68 15.30	MY3 25.01 1.66 15.07 41.56 2.77 >300 3.48 1.01 28.33 1.47 1208.82 - - - -	MY4 25.02 1.58 15.84 39.53 2.75 >300 3.49 0.97 26.42 1.50 1204.82 - -		MY+	$\begin{array}{c} 43.48\\ 1.84\\ 23.59\\ 80.10\\ 5.25\\ >300\\ 1.60\\ 1.00\\ 47.16\\ 1.70\\ 1208.14\\ \hline \\ 43.48\\ 1.84\\ 1.84\\ 23.59\\ \end{array}$	$\begin{array}{c} 41.92\\ 1.75\\ 23.92\\ 73.50\\ 4.98\\ >300\\ 1.60\\ 0.90\\ 45.42\\ 1.70\\ 1208.14\\ \end{array}$	MY2 34.57 1.69 20.50 58.30 3.78 >300 2.00 1.00 37.95 1.54 1208.14 34.57 1.69 20.50	MY3 35.96 1.59 22.62 57.16 4.63 >300 1.89 1.01 39.14 1.46 1208.14	MY4 44.93 1.53 29.37 68.54 3.75 >300 1.51 0.94 48.74 1.41 1208.14 - -	MY5	MY+	26.61 2.05 12.98 54.50 3.30 >300 4.80 1.00 30.71 1.77 1208.23 26.61 2.05 12.98	MY1 25.90 1.95 13.26 50.60 3.15 >300 4.90 1.00 29.80 1.70 1208.23 25.90 1.95 13.26	MY2 25.80 1.84 14.00 47.60 2.95 >300 4.90 1.00 29.48 1.61 1208.23 26.80 1.84 14.10	MY3 25.75 1.80 14.31 46.23 3.20 >300 4.93 1.04 29.35 1.58 1208.23 -	MY4 MY5 22.23 1.67 13.31 37.16 3.04 >300 5.71 1.00 24.01 1.55 1208.23 -	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Dimension and substrate Based on fixed baseline bankfull elevation BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft ²) BF Max Depth (ft) Width of Floodprone Area (ft) Entrenchment Ratio Bank Height Ratio Wetted Perimeter (ft) Hydraulic Radius (ft) Fixed baseline bankfull elevatior Based on current/developing bankfull feature BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft ²)	$\begin{array}{c} 28.43\\ 1.65\\ 17.25\\ 46.90\\ 2.91\\ >300\\ 3.10\\ 1.00\\ 31.73\\ 1.48\\ 1208.80\\ \hline \\ 28.43\\ 1.65\\ 17.25\\ 46.90\\ \end{array}$	MY1 26.08 1.66 15.69 43.40 2.81 >300 3.30 1.00 29.40 1.48 1208.80 26.08 1.66 15.69 43.40	MY2 25.21 1.68 15.04 42.30 2.80 >300 3.50 1.00 28.57 1.48 1208.80 25.75 1.68 15.30 43.29	MY3 25.01 1.66 15.07 41.56 2.77 >300 3.48 1.01 28.33 1.47 1208.82 - - - - - - - - -	MY4 25.02 1.58 15.84 39.53 2.75 >300 3.49 0.97 26.42 1.50 1204.82 - - -		MY+	$\begin{array}{c} & 43.48 \\ \hline 1.84 \\ 23.59 \\ 80.10 \\ 5.25 \\ > 300 \\ \hline 1.60 \\ 1.00 \\ 47.16 \\ \hline 1.70 \\ 1208.14 \\ \hline \\ 43.48 \\ \hline 1.84 \\ 23.59 \\ 80.10 \\ \end{array}$	$\begin{array}{c} 41.92\\ 1.75\\ 23.92\\ 73.50\\ 4.98\\ >300\\ 1.60\\ 0.90\\ 45.42\\ 1.70\\ 1208.14\\ \end{array}$	MY2 34.57 1.69 20.50 58.30 3.78 >300 1.00 37.95 1.54 1208.14 34.57 1.69 20.50 58.30	MY3 35.96 1.59 22.62 57.16 4.63 >300 1.89 1.01 39.14 1.46 1208.14	MY4 44.93 1.53 29.37 68.54 3.75 >300 1.51 0.94 48.74 1.41 1208.14 - - - -	MY5	MY+	26.61 2.05 12.98 54.50 3.30 >300 4.80 1.00 30.71 1.77 1208.23 26.61 2.05 12.98 54.50	MY1 25.90 1.95 13.26 50.60 3.15 >300 4.90 1.00 29.80 1.70 1208.23 25.90 1.95 13.26 50.60	MY2 25.80 1.84 14.00 47.60 2.95 >300 4.90 1.00 29.48 1.61 1208.23 26.80 1.84 14.10 50.98	MY3 25.75 1.80 14.31 46.23 3.20 >300 4.93 1.04 29.35 1.58 1208.23 - -	MY4 MY5 22.23 1.67 13.31 37.16 3.04 >300 5.71 1.00 24.01 1.55 1208.23 -	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Dimension and substrate Based on fixed baseline bankfull elevation BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft ²) BF Max Depth (ft) Width of Floodprone Area (ft) Entrenchment Ratio Bank Height Ratio Wetted Perimeter (ft) Hydraulic Radius (ft) Fixed baseline bankfull elevatior Based on current/developing bankfull feature BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft ²) BF Max Depth (ft)	$\begin{array}{c} 28.43\\ 1.65\\ 17.25\\ 46.90\\ 2.91\\ >300\\ 3.10\\ 1.00\\ 31.73\\ 1.48\\ 1208.80\\ \hline \\ 28.43\\ 1.65\\ 17.25\\ 46.90\\ 2.91\\ \hline \end{array}$	MY1 26.08 1.66 15.69 43.40 2.81 >300 3.30 1.00 29.40 1.48 1208.80 26.08 1.66 15.69 43.40 2.81	MY2 25.21 1.68 15.04 42.30 2.80 >300 3.50 1.00 28.57 1.48 1208.80 25.75 1.68 15.30 43.29 2.84	MY3 25.01 1.66 15.07 41.56 2.77 >300 3.48 1.01 28.33 1.47 1208.82 - - - -	MY4 25.02 1.58 15.84 39.53 2.75 >300 3.49 0.97 26.42 1.50 1204.82 - - - -		MY+	$\begin{array}{c} 43.48\\ 1.84\\ 23.59\\ 80.10\\ 5.25\\ >300\\ 1.60\\ 1.00\\ 47.16\\ 1.70\\ 1208.14\\ \hline \\ 43.48\\ 1.84\\ 23.59\\ 80.10\\ 5.25\\ \end{array}$	$\begin{array}{c c} 41.92\\ 1.75\\ 23.92\\ 73.50\\ \hline 4.98\\ >300\\ 1.60\\ 0.90\\ 45.42\\ 1.70\\ 1208.14\\ \hline \\ 41.92\\ 1.75\\ 23.92\\ 73.50\\ 4.98\\ \end{array}$	MY2 34.57 1.69 20.50 58.30 3.78 >300 2.00 1.00 37.95 1.54 1208.14 34.57 1.69 20.50 58.30 3.78	MY3 35.96 1.59 22.62 57.16 4.63 >300 1.89 1.01 39.14 1.46 1208.14 - - - -	MY4 44.93 1.53 29.37 68.54 3.75 >300 1.51 0.94 48.74 1.41 1208.14 - - - -	MY5	MY+	26.61 2.05 12.98 54.50 3.30 4.80 1.00 30.71 1.77 1208.23 26.61 2.05 12.98 54.50 3.30	MY1 25.90 1.95 13.26 50.60 3.15 >300 4.90 1.00 29.80 1.70 1208.23 25.90 1.95 13.26 50.60 3.15	MY2 25.80 1.84 14.00 47.60 2.95 >300 4.90 1.00 29.48 1.61 1208.23 26.80 1.84 14.10 50.98 3.08	MY3 25.75 1.80 14.31 46.23 3.20 >300 4.93 1.04 29.35 1.58 1208.23 - - - -	MY4 MY5 22.23 1.67 13.31 37.16 37.16 3.04 >300 5.71 1.00 24.01 1.55 1208.23	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Dimension and substrate Based on fixed baseline bankfull elevation BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft ²) BF Max Depth (ft) Width of Floodprone Area (ft) Entrenchment Ratio Bank Height Ratio Wetted Perimeter (ft) Hydraulic Radius (ft) Fixed baseline bankfull elevatior Based on current/developing bankfull feature BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft ²) BF Max Depth (ft)	$\begin{array}{c} 28.43\\ 1.65\\ 17.25\\ 46.90\\ 2.91\\ >300\\ 3.10\\ 1.00\\ 31.73\\ 1.48\\ 1208.80\\ \hline \\ 28.43\\ 1.65\\ 17.25\\ 46.90\\ 2.91\\ >300\\ \end{array}$	MY1 26.08 1.66 15.69 43.40 2.81 >300 3.30 1.00 29.40 1.48 1208.80 26.08 1.66 15.69 43.40 2.81 >300	MY2 25.21 1.68 15.04 42.30 2.80 >300 3.50 1.00 28.57 1.48 1208.80 25.75 1.68 15.30 43.29 2.84 >300	MY3 25.01 1.66 15.07 41.56 2.77 >300 3.48 1.01 28.33 1.47 1208.82 - - - - - - - - -	MY4 25.02 1.58 15.84 39.53 2.75 >300 3.49 0.97 26.42 1.50 1204.82 - - - - -		MY+	$\begin{array}{c} 43.48\\ 1.84\\ 23.59\\ 80.10\\ 5.25\\ >300\\ 1.60\\ 1.00\\ 47.16\\ 1.70\\ 1208.14\\ \hline \\ 43.48\\ 1.84\\ 1.84\\ 23.59\\ 80.10\\ 5.25\\ >300\\ \end{array}$	$\begin{array}{c c} 41.92\\ 1.75\\ 23.92\\ 73.50\\ 4.98\\ >300\\ 1.60\\ 0.90\\ 45.42\\ 1.70\\ 1208.14\\ \hline \end{array}$	MY2 34.57 1.69 20.50 58.30 3.78 >300 2.00 1.00 37.95 1.54 1208.14 34.57 1.69 20.50 58.30 3.78 >300 2.00 1.00 37.95 1.54 20.50 3.78 2.05 3.78 2.00 3.78 2.00 3.79 2.00 3.79 3.78 3.79 3.78 3.78 3.78 3.78 3.78 3.79 3.78 3.00 3.78 3.78 3	MY3 35.96 1.59 22.62 57.16 4.63 >300 1.89 1.01 39.14 1.46 1208.14	MY4 44.93 1.53 29.37 68.54 3.75 >300 1.51 0.94 48.74 1.41 1208.14 - - - - -	MY5	MY+	26.61 2.05 12.98 54.50 3.30 4.80 1.00 30.71 1.77 1208.23 26.61 2.05 12.98 54.50 3.30 >300	MY1 25.90 1.95 13.26 50.60 3.15 >300 4.90 1.00 29.80 1.70 1208.23 25.90 1.95 13.26 50.60 3.15 >300	MY2 25.80 1.84 14.00 47.60 2.95 >300 4.90 1.00 29.48 1.61 1208.23 26.80 1.84 14.10 50.98 3.08 >300	MY3 25.75 1.80 14.31 46.23 3.20 >300 4.93 1.04 29.35 1.58 1208.23 - - - - -	MY4 MY5 22.23 1.67 13.31 37.16 37.16 3.04 >300 5.71 1.00 24.01 1.55 1208.23 - - - - - - - - - - - - - -	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Dimension and substrate Based on fixed baseline bankfull elevation BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft ²) BF Max Depth (ft) Width of Floodprone Area (ft) Entrenchment Ratio Bank Height Ratio Wetted Perimeter (ft) Hydraulic Radius (ft) Fixed baseline bankfull elevatior Based on current/developing bankfull feature BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft ²) BF Max Depth (ft) Width of Floodprone Area (ft)	$\begin{array}{c} 28.43\\ 1.65\\ 17.25\\ 46.90\\ 2.91\\ >300\\ 3.10\\ 1.00\\ 31.73\\ 1.48\\ 1208.80\\ \hline \\ 28.43\\ 1.65\\ 17.25\\ 46.90\\ 2.91\\ >300\\ 3.10\\ \end{array}$	MY1 26.08 1.66 15.69 43.40 2.81 >300 3.30 1.00 29.40 1.48 1208.80 26.08 1.66 15.69 43.40 2.81 >300 3.30	MY2 25.21 1.68 15.04 42.30 2.80 >300 3.50 1.00 28.57 1.48 1208.80 25.75 1.68 15.30 43.29 >3.40	MY3 25.01 1.66 15.07 41.56 2.77 >300 3.48 1.01 28.33 1.47 1208.82 - - - - - - - - -	MY4 25.02 1.58 15.84 39.53 2.75 >300 3.49 0.97 26.42 1.50 1204.82 - - - -		MY+	$\begin{array}{c} 43.48\\ 1.84\\ 23.59\\ 80.10\\ 5.25\\ >300\\ 1.60\\ 1.00\\ 47.16\\ 1.70\\ 1208.14\\ \hline \\ 43.48\\ 1.84\\ 23.59\\ 80.10\\ 5.25\\ >300\\ 1.60\\ \hline \end{array}$	$\begin{array}{c} 41.92\\ 1.75\\ 23.92\\ 73.50\\ 4.98\\ >300\\ 1.60\\ 0.90\\ 45.42\\ 1.70\\ 1208.14\\ \end{array}$	MY2 34.57 1.69 20.50 58.30 3.78 >300 2.00 1.00 37.95 1.54 1208.14 34.57 1.69 20.50 58.30 3.78 >300 2.00 58.30 3.78 >300 2.00 58.30 3.78 2.00 58.30 3.78 2.00 58.30 3.78 2.00 3.795 1.54 34.57 1.69 20.50 58.30 3.78 2.00 2.00 3.795 3.78 3.795 3.78 3.00 3.78 3.78	MY3 35.96 1.59 22.62 57.16 4.63 >300 1.89 1.01 39.14 1.46 1208.14 - - - -	MY4 44.93 1.53 29.37 68.54 3.75 >300 1.51 0.94 48.74 1.41 1208.14 - - - -	MY5	MY+	$\begin{array}{c} 26.61 \\ 2.05 \\ 12.98 \\ 54.50 \\ 3.30 \\ 300 \\ 4.80 \\ 1.00 \\ 30.71 \\ 1.77 \\ 1208.23 \\ \hline \\ 26.61 \\ 2.05 \\ 12.98 \\ 54.50 \\ 3.30 \\ 3.30 \\ 300 \\ 4.80 \\ \hline \end{array}$	MY1 25.90 1.95 13.26 50.60 3.15 >300 4.90 1.00 29.80 1.70 1208.23 25.90 1.95 13.26 50.60 3.15 >300 4.90 1.95 13.26 50.60 3.15 >300 4.90 1.95 1.326 50.60 1.95 1.95 1.326 50.60 1.95 1.95 1.326 50.60 1.95 1.326 50.60 1.95 1.326 50.60 3.15 2.300 1.95 1.326 50.60 3.15 2.300 1.95 1.326 50.60 3.15 2.300 1.95 1.326 50.60 3.15 2.300 1.95 1.95 1.326 50.60 3.15 2.300 1.95 1.95 1.95 1.95 1.95 1.90 1.95 1.95 1.90 1.90 1.95 1.90 1.95 1.90 1.95 1.90 1.90 1.95 1.95	MY2 25.80 1.84 14.00 47.60 2.95 >300 4.90 1.00 29.48 1.61 1208.23 26.80 1.84 14.10 50.98 3.08 >300 >4.70	MY3 25.75 1.80 14.31 46.23 3.20 >300 4.93 1.04 29.35 1.58 1208.23 - - - -	MY4 MY5 22.23 1.67 13.31 37.16 37.16 3.04 >300 5.71 1.00 24.01 1.55 1208.23	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Dimension and substrate Based on fixed baseline bankfull elevation BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft ²) BF Max Depth (ft) Width of Floodprone Area (ft) Entrenchment Ratio Bank Height Ratio Wetted Perimeter (ft) Hydraulic Radius (ft) Fixed baseline bankfull elevatior Based on current/developing bankfull feature BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft ²) BF Max Depth (ft) Width of Floodprone Area (ft) Entrenchment Ratio Bank Height Ratio	$\begin{array}{c} 28.43\\ 1.65\\ 17.25\\ 46.90\\ 2.91\\ >300\\ 3.10\\ 1.00\\ 31.73\\ 1.48\\ 1208.80\\ \hline \\ 28.43\\ 1.65\\ 17.25\\ 46.90\\ 2.91\\ >300\\ 3.10\\ 1.00\\ \hline \end{array}$	MY1 26.08 1.66 15.69 43.40 2.81 >300 3.30 1.00 29.40 1.48 1208.80 26.08 1.66 15.69 43.40 2.81 >300 3.30 1.00 2.81 3.30 1.00 2.81 2.81 3.30 1.00 2.81 3.00 3.30 1.00 2.81 3.69 43.40 3.30 1.00 2.81 3.00 1.66 1.5.69 43.40 3.30 1.00 2.81 3.30 1.00 2.81 3.30 1.00 2.81 3.30 1.00 2.81 3.30 1.00 2.81 3.30 1.00 2.81 3.30 1.00 2.81 3.30 1.00 3.30 1.00 3.30 1.00 3.30 1.00 3.30 1.00 3.30	MY2 25.21 1.68 15.04 42.30 2.80 3.50 1.00 28.57 1.48 1208.80 25.75 1.68 15.30 43.29 2.84 >300 >3.40 1.00	MY3 25.01 1.66 15.07 41.56 2.77 >300 3.48 1.01 28.33 1.47 1208.82 - - - - - - - - -	MY4 25.02 1.58 15.84 39.53 2.75 >300 3.49 0.97 26.42 1.50 1204.82 - - - - - - -		MY+	$\begin{array}{c} 43.48\\ 1.84\\ 23.59\\ 80.10\\ 5.25\\ >300\\ 1.60\\ 1.00\\ 47.16\\ 1.70\\ 1208.14\\ \hline \\ 43.48\\ 1.84\\ 23.59\\ 80.10\\ 5.25\\ >300\\ 1.60\\ 1.00\\ \hline \end{array}$	$\begin{array}{c} 41.92\\ 1.75\\ 23.92\\ 73.50\\ 4.98\\ >300\\ 1.60\\ 0.90\\ 45.42\\ 1.70\\ 1208.14\\ \end{array}$	MY2 34.57 1.69 20.50 58.30 3.78 >300 2.00 1.00 37.95 1.54 1208.14 34.57 1.69 20.50 58.30 3.78 >300 2.00 1.00 37.95 1.54 1208.14 34.57 1.69 20.50 58.30 3.78 >300 2.00 1.00 37.95 1.54 1208.14 34.57 1.69 20.50 58.30 3.78 20.50 1.54 1.00 37.95 1.54 1.00 37.95 1.54 1.00 3.78 2.00 1.00 37.95 1.54 1.00 37.95 1.54 1.00 2.05 1.54 1.00 3.78 2.00 1.00 37.95 1.54 1.00 3.78 2.05 1.54 1.00 3.78 2.05 1.54 1.00 3.78 2.05 1.54 1.00 3.78 2.05 1.54 1.00 3.78 2.05 1.54 1.00 3.78 2.05 1.54 1.00 3.78 2.05 1.54 1.00 3.78 2.05 1.54 1.00 3.78 2.05 1.54 1.00 3.78 2.05 1.54 1.00 3.78 2.00 1.00 3.78 2.00 1.00 3.78 2.05 1.54 1.00 3.78 3.78 3.78 3.78 3.78 3.78 3.78 3.78 3.78 3.78 3.78 3.78 3.78 3.78 3.78 3.00 2.00 1.00 3.78 3.00 2.00 1.00 3.78 3.00 2.00 1.00 3.78 3.00 2.00 1.00 3.78 3.00 2.00 1.00 3.78 3.00 2.00 1.00 3.78 3.00 2.00 1.00 3.78 3.00 3.78 3.00 3.78 3.00 3.78 3.00 3.78 3.00 3	MY3 35.96 1.59 22.62 57.16 4.63 >300 1.89 1.01 39.14 1.46 1208.14	MY4 44.93 1.53 29.37 68.54 3.75 >300 1.51 0.94 48.74 1.41 1208.14 - - - - - - - - - -	MY5	MY+	$\begin{array}{c} 26.61 \\ 2.05 \\ 12.98 \\ 54.50 \\ 3.30 \\ >300 \\ 4.80 \\ 1.00 \\ 30.71 \\ 1.77 \\ 1208.23 \\ \hline \\ 26.61 \\ 2.05 \\ 12.98 \\ 54.50 \\ 3.30 \\ >300 \\ 4.80 \\ 1.00 \\ \hline \end{array}$	MY1 25.90 1.95 13.26 50.60 3.15 >300 4.90 1.00 29.80 1.70 1208.23 25.90 1.95 13.26 50.60 3.15 >300 4.90 1.05 1.26 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.26 1.25 1.5 1.20 1.20 1.25 1.20 1.25 1.20 1.25 1.25 1.25 1.20 1.20 1.20 1.20 1.20 1.20 1.25 1.20 1.20 1.20 1.20 1.20 1.20 1.25	MY2 25.80 1.84 14.00 47.60 2.95 >300 4.90 1.00 29.48 1.61 1208.23 26.80 1.84 14.10 50.98 3.08 >300 >4.70 1.00	MY3 25.75 1.80 14.31 46.23 3.20 >300 4.93 1.04 29.35 1.58 1208.23 - - - - - - - - - - - - -	MY4 MY5 22.23 1.67 13.31 37.16 3.04 >300 5.71 1.00 24.01 1.55 1208.23 - - - - - - - - - - - - - - - - - - - - - - - - - - -	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Dimension and substrate Based on fixed baseline bankfull elevation BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft ²) BF Max Depth (ft) Width of Floodprone Area (ft) Entrenchment Ratio Bank Height Ratio Wetted Perimeter (ft) Hydraulic Radius (ft) Fixed baseline bankfull elevatior Based on current/developing bankfull feature BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft ²) BF Max Depth (ft) Width of Floodprone Area (ft) Entrenchment Ratio Bank Height Ratio Bank Height Ratio	$\begin{array}{c} 28.43\\ 1.65\\ 17.25\\ 46.90\\ 2.91\\ >300\\ 3.10\\ 1.00\\ 31.73\\ 1.48\\ 1208.80\\ \hline \\ 28.43\\ 1.65\\ 17.25\\ 46.90\\ 2.91\\ >300\\ 3.10\\ 1.00\\ 31.73\\ \hline \end{array}$	MY1 26.08 1.66 15.69 43.40 2.81 >300 3.30 1.00 29.40 1.48 1208.80 26.08 1.66 15.69 43.40 2.81 >300 3.30 1.00 29.40 1.66 15.69 43.40 2.81 2.60 3.30 2.81 2.940 3.30 1.00 2.9.40 2.81 2.940 3.30 1.00 2.9.40 2.81 2.940 2.940 2.81 2.940 2.94	MY2 25.21 1.68 15.04 42.30 2.80 >300 3.50 1.00 28.57 1.48 1208.80 25.75 1.68 15.30 43.29 2.84 >300 >3.40 1.00 29.11	MY3 25.01 1.66 15.07 41.56 2.77 >300 3.48 1.01 28.33 1.47 1208.82 - - - - - - - - -	MY4 25.02 1.58 15.84 39.53 2.75 >300 3.49 0.97 26.42 1.50 1204.82 - - - - -		MY+	$\begin{array}{c} 43.48\\ 1.84\\ 23.59\\ 80.10\\ 5.25\\ >300\\ 1.60\\ 1.00\\ 47.16\\ 1.70\\ 1208.14\\ \hline \\ 43.48\\ 1.84\\ 23.59\\ 80.10\\ 5.25\\ >300\\ 1.60\\ 1.00\\ 47.16\\ \hline \end{array}$	$\begin{array}{c} 41.92\\ 1.75\\ 23.92\\ 73.50\\ 4.98\\ >300\\ 1.60\\ 0.90\\ 45.42\\ 1.70\\ 1208.14\\ \end{array}$	MY2 34.57 1.69 20.50 58.30 3.78 >300 2.00 1.00 37.95 1.54 1208.14 34.57 1.69 20.50 58.30 3.78 >300 2.00 1.00 37.95 1.54 1208.14 34.57 1.69 20.50 58.30 3.78 >300 2.00 1.00 3.795 1.54 1.09 20.50 58.30 3.78 20.50 1.54 1.00 3.78 20.50 1.54 1.09 20.50 58.30 3.78 20.50 1.54 1.00 3.78 20.50 1.54 1.00 3.78 20.50 1.54 1.00 3.78 2.00 1.00 3.7.95 1.54 1.00 3.78 2.00 1.00 3.7.95 1.54 1.00 3.78 2.00 1.00 3.7.95 1.54 1.00 3.78 2.00 1.00 3.7.95 1.54 1.00 3.78 2.00 1.00 3.78 2.00 3.78 2.00 1.00 3.795 3.78 2.000 3.78 3.000 2.000 1.00 3.7.95 3.78 3.000 2.000 1.00 3.7.95 3.000 2.000 1.000 3.7.95 3.795 3.000 2.000 1.000 3.7.95 3.000 3.7.95 3.000 3.7.95 3.000 3.795 3.000 3.795 3.000 3.795 3.000 3.795 3.000 3.795 3.000 3.795 3.000 3.795 3.000 3.795 3.000 3.795 3.000 3.795 3.000 3.795 3.000 3.795 3.000 3.795 3.000 3.795 3.000 3.795 3.000 3.795 3.0000 3.795 3.000 3.795 3.0000 3.795 3.0000 3.000 3.000 3.000 3.000 3.000 3.00000 3.0000 3.0000 3.00000 3.0000 3.00000 3.00000 3.00000 3.00000 3.00000 3.000000 3.0000000000	MY3 35.96 1.59 22.62 57.16 4.63 >300 1.89 1.01 39.14 1.46 1208.14	MY4 44.93 1.53 29.37 68.54 3.75 >300 1.51 0.94 48.74 1.41 1208.14 - - - - -	MY5	MY+	26.61 2.05 12.98 54.50 3.30 >300 4.80 1.00 30.71 1.77 1208.23 26.61 2.05 12.98 54.50 3.30 >300 4.80 1.00 30.71	MY1 25.90 1.95 13.26 50.60 3.15 >300 4.90 1.00 29.80 1.70 1208.23 25.90 1.95 13.26 50.60 3.15 >300 4.90 1.95 13.26 50.60 3.15 >300 4.90 1.95 13.26 50.60 3.15 >300 4.90 1.95 1.95 1.95 1.95 1.95 1.95 1.95 1.95 1.95 1.95 1.95 1.95 1.95 1.95 1.95 1.95 1.95 1.95 1.90 1.95 1.95 1.95 1.95 1.95 1.95 1.95 1.95 1.95 1.95 1.326 50.60 1.95 1.95 1.326 50.60 1.95 1.95 1.326 50.60 1.95 1.326 50.60 1.95 1.326 50.60 1.95 1.326 50.60 1.95 1.326 50.60 1.95 1.95 1.95 1.90 2.90 1.95 1.95 1.92 2.90 1.95 1.95 1.92 2.90 1.95 1.92 2.90 1.95 1.90 2.90 1.95 1.92 2.90 1.95 1.90 2.90 1.95 1.95 1.90 2.90 1.95 1.90 2.90 1.95 1.90 2.90 1.95 2.90 1.90 2.90 1.90 2.90 1.95 2.90 1.90 2.90 1.90 2.90 1.95 2.90 1.90 2.90 1.90 2.90 1.95 2.90 1.90 2.90 1.90 2.90 2.90 1.90 2.90 1.90 2.90 2.90 1.90 2.90 1.90 2.90 1.90 2.90 1.90 2.90 1.90 2.90 1.90 2.90 1.90 2.90 1.90 2.90 1.00 2.90 2.90 1.00 2.980 2.980	MY2 25.80 1.84 14.00 47.60 2.95 >300 4.90 1.00 29.48 1.61 1208.23 26.80 1.84 14.10 50.98 3.08 >300 >4.70 1.00 30.48	MY3 25.75 1.80 14.31 46.23 3.20 >300 4.93 1.04 29.35 1.58 1208.23 - - - - -	MY4 MY5 22.23 1.67 13.31 37.16 37.16 3.04 >300 5.71 1.00 24.01 1.55 1208.23 - - - - - - - - - - - - - -	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Dimension and substrate Based on fixed baseline bankfull elevation BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft ²) BF Max Depth (ft) Width of Floodprone Area (ft) Entrenchment Ratio Bank Height Ratio Wetted Perimeter (ft) Hydraulic Radius (ft) Fixed baseline bankfull elevatior Based on current/developing bankfull feature BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft ²) BF Max Depth (ft) Width of Floodprone Area (ft) Entrenchment Ratio Bank Height Ratio Wetted Perimeter (ft) Hydraulic Radius (ft)*	$\begin{array}{c} 28.43\\ 1.65\\ 17.25\\ 46.90\\ 2.91\\ >300\\ 3.10\\ 1.00\\ 31.73\\ 1.48\\ 1208.80\\ \hline \\ 28.43\\ 1.65\\ 17.25\\ 46.90\\ 2.91\\ >300\\ 3.10\\ 1.00\\ \hline \end{array}$	MY1 26.08 1.66 15.69 43.40 2.81 >300 3.30 1.00 29.40 1.48 1208.80 26.08 1.66 15.69 43.40 2.81 >300 2.81 >300 2.81 2.80 1.00 29.40 1.48 1.66 1.5.69 43.40 2.81	MY2 25.21 1.68 15.04 42.30 2.80 3.50 1.00 28.57 1.48 1208.80 25.75 1.68 15.30 43.29 2.84 >300 >3.40 1.00	MY3 25.01 1.66 15.07 41.56 2.77 >300 3.48 1.01 28.33 1.47 1208.82 - - - - - - - - -	MY4 25.02 1.58 15.84 39.53 2.75 >300 3.49 0.97 26.42 1.50 1204.82 - - - - - - -		MY+	$\begin{array}{c} 43.48\\ 1.84\\ 23.59\\ 80.10\\ 5.25\\ >300\\ 1.60\\ 1.00\\ 47.16\\ 1.70\\ 1208.14\\ \hline \\ 43.48\\ 1.84\\ 23.59\\ 80.10\\ 5.25\\ >300\\ 1.60\\ 1.00\\ \hline \end{array}$	$\begin{array}{c} 41.92\\ 1.75\\ 23.92\\ 73.50\\ 4.98\\ >300\\ 1.60\\ 0.90\\ 45.42\\ 1.70\\ 1208.14\\ \end{array}$	MY2 34.57 1.69 20.50 58.30 3.78 >300 2.00 1.00 37.95 1.54 1208.14 34.57 1.69 20.50 58.30 3.78 >300 2.00 1.00 37.95 1.54 1208.14 34.57 1.69 20.50 58.30 3.78 >300 2.00 1.00 37.95 1.54 1208.14 34.57 1.69 20.50 58.30 3.78 20.50 1.54 1.00 37.95 1.54 1.00 37.95 1.54 1.00 3.78 2.00 1.00 37.95 1.54 1.00 37.95 1.54 1.00 2.05 1.54 1.00 3.78 2.00 1.00 37.95 1.54 1.00 3.78 2.05 1.54 1.00 3.78 2.05 1.54 1.00 3.78 2.05 1.54 1.00 3.78 2.05 1.54 1.00 3.78 2.05 1.54 1.00 3.78 2.05 1.54 1.00 3.78 2.05 1.54 1.00 3.78 2.05 1.54 1.00 3.78 2.05 1.54 1.00 3.78 2.05 1.54 1.00 3.78 2.00 1.00 3.78 2.00 1.00 3.78 2.05 1.54 1.00 3.78 3.78 3.78 3.78 3.78 3.78 3.78 3.78 3.78 3.78 3.78 3.78 3.78 3.78 3.78 3.00 2.00 1.00 3.78 3.00 2.00 1.00 3.78 3.00 2.00 1.00 3.78 3.00 2.00 1.00 3.78 3.00 2.00 1.00 3.78 3.00 2.00 1.00 3.78 3.00 2.00 1.00 3.78 3.00 3.78 3.00 3.78 3.00 3.78 3.00 3.78 3.00 3	MY3 35.96 1.59 22.62 57.16 4.63 >300 1.89 1.01 39.14 1.46 1208.14	MY4 44.93 1.53 29.37 68.54 3.75 >300 1.51 0.94 48.74 1.41 1208.14 - - - - - - - - - -	MY5	MY+	$\begin{array}{c} 26.61\\ 2.05\\ 12.98\\ 54.50\\ 3.30\\ >300\\ 4.80\\ 1.00\\ 30.71\\ 1.77\\ 1208.23\\ \hline \\ 26.61\\ 2.05\\ 12.98\\ 54.50\\ 3.30\\ >300\\ 4.80\\ 1.00\\ \hline \end{array}$	MY1 25.90 1.95 13.26 50.60 3.15 >300 4.90 1.00 29.80 1.70 1208.23 25.90 1.95 13.26 50.60 3.15 >300 4.90 1.05 1.26 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.26 1.25 1.5 1.20 1.20 1.25 1.20 1.25 1.20 1.25 1.25 1.25 1.20 1.20 1.20 1.20 1.20 1.20 1.25 1.20 1.20 1.20 1.20 1.20 1.20 1.25	MY2 25.80 1.84 14.00 47.60 2.95 >300 4.90 1.00 29.48 1.61 1208.23 26.80 1.84 14.10 50.98 3.08 >300 >4.70 1.00	MY3 25.75 1.80 14.31 46.23 3.20 >300 4.93 1.04 29.35 1.58 1208.23 - - - - - - - - - - - - -	MY4 MY5 22.23 1.67 13.31 37.16 3.04 >300 5.71 1.00 24.01 1.55 1208.23 - - - - - - - - - - - - - - - - - - - - - - - - - - -	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Dimension and substrate Based on fixed baseline bankfull elevation BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft ²) BF Max Depth (ft) Width of Floodprone Area (ft) Entrenchment Ratio Bank Height Ratio Wetted Perimeter (ft) Hydraulic Radius (ft) Fixed baseline bankfull elevatior Based on current/developing bankfull feature BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft ²) BF Max Depth (ft) Width of Floodprone Area (ft ²) BF Max Depth (ft) Width of Floodprone Area (ft) Entrenchment Ratio Bank Height Ratio Wetted Perimeter (ft) Hydraulic Radius (ft)*	$\begin{array}{c} 28.43\\ 1.65\\ 17.25\\ 46.90\\ 2.91\\ >300\\ 3.10\\ 1.00\\ 31.73\\ 1.48\\ 1208.80\\ \hline \\ 28.43\\ 1.65\\ 17.25\\ 46.90\\ 2.91\\ >300\\ 3.10\\ 1.00\\ 31.73\\ \hline \end{array}$	MY1 26.08 1.66 15.69 43.40 2.81 >300 3.30 1.00 29.40 1.48 1208.80 26.08 1.66 15.69 43.40 2.81 >300 2.81 >300 2.81 	MY2 25.21 1.68 15.04 42.30 2.80 3.50 1.00 28.57 1.48 1208.80 25.75 1.68 15.30 43.29 2.84 >300 >3.40 1.00 29.11 1.49 -	MY3 25.01 1.66 15.07 41.56 2.77 >300 3.48 1.01 28.33 1.47 1208.82 - - - - - - - - -	MY4 25.02 1.58 15.84 39.53 2.75 >300 3.49 0.97 26.42 1.50 1204.82 - - - - - - - - - - - - -		MY+	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c} 41.92\\ 1.75\\ 23.92\\ 73.50\\ 4.98\\ >300\\ 1.60\\ 0.90\\ 45.42\\ 1.70\\ 1208.14\\ \hline \\ 41.92\\ 1.75\\ 23.92\\ 73.50\\ 4.98\\ >300\\ 1.60\\ 0.90\\ 45.42\\ 1.70\\ \hline \\ .\\ -\end{array}$	MY2 34.57 1.69 20.50 58.30 3.78 >300 2.00 1.00 37.95 1.54 1208.14 34.57 1.69 20.50 58.30 3.78 >300 2.00 1.00 37.95 1.54 - 300 2.00 1.00 37.95 1.54 - 300 - 2.05 - 3.78 - 300 - - - - - - - - - - - - -	MY3 35.96 1.59 22.62 57.16 4.63 >300 1.89 1.01 39.14 1.46 1208.14 - - - - - - - - - - - - -	MY4 44.93 1.53 29.37 68.54 3.75 >300 1.51 0.94 48.74 1.41 1208.14 - - - - - - - - - -	MY5	MY+	26.61 2.05 12.98 54.50 3.30 ≥300 4.80 1.00 30.71 1.77 1208.23 26.61 2.05 12.98 54.50 3.30 ≥300 4.80 1.00 30.71 1.77 -	MY1 25.90 1.95 13.26 50.60 3.15 >300 4.90 1.00 29.80 1.70 1208.23 25.90 1.95 13.26 50.60 3.15 >300 4.90 1.95 13.26 50.60 3.15 >300 4.90 1.95 13.26 50.60 3.15 	MY2 25.80 1.84 14.00 47.60 2.95 >300 4.90 1.00 29.48 1.61 1208.23 26.80 1.84 14.10 50.98 3.08 >300 >4.70 1.00 30.48 1.67 -	MY3 25.75 1.80 14.31 46.23 3.20 >300 4.93 1.04 29.35 1.58 1208.23 - - - - - - - - - - - - -	MY4 MY5 22.23 1.67 13.31 37.16 3.04 >300 5.71 1.00 24.01 1.55 1208.23 - - -	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Dimension and substrate Based on fixed baseline bankfull elevation BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft ²) BF Max Depth (ft) Width of Floodprone Area (ft) Entrenchment Ratio Bank Height Ratio Wetted Perimeter (ft) Hydraulic Radius (ft) Fixed baseline bankfull feature BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft ²) BF Max Depth (ft) Width of Floodprone Area (ft) BF Max Depth (ft) Width of Floodprone Area (ft) Basel on Current/developing bankfull feature BF Max Depth (ft) Width of Floodprone Area (ft) Bank Height Ratio Bank Height Ratio Wetted Perimeter (ft) Hydraulic Radius (ft)*	28.43 1.65 17.25 46.90 2.91 >300 3.10 1.00 31.73 1.48 1208.80 28.43 1.65 17.25 46.90 2.91 >300 3.10 1.00 31.73 1.48 - - -	MY1 26.08 1.66 15.69 43.40 2.81 >300 3.30 1.00 29.40 1.48 1208.80 26.08 1.66 15.69 43.40 2.81 >300 3.30 1.00 2.81 >300 1.00 1.48 1.66 43.40 2.81 	MY2 25.21 1.68 15.04 42.30 2.80 >300 3.50 1.00 28.57 1.48 1208.80 25.75 1.68 15.30 43.29 2.84 >300 >3.40 1.00 29.11 1.49 -	MY3 25.01 1.66 15.07 41.56 2.77 >300 3.48 1.01 28.33 1.47 1208.82 -	MY4 25.02 1.58 15.84 39.53 2.75 >300 3.49 0.97 26.42 1.50 1204.82 - - - -	MY5		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccc} & 41.92 \\ \hline 1.75 \\ \hline 23.92 \\ \hline 73.50 \\ \hline 4.98 \\ \hline >300 \\ \hline 1.60 \\ \hline 0.90 \\ \hline 45.42 \\ \hline 1.70 \\ \hline 1208.14 \\ \hline \\ \hline \\ 41.92 \\ \hline 1.75 \\ \hline 23.92 \\ \hline 73.50 \\ \hline 4.98 \\ \hline >300 \\ \hline 1.60 \\ \hline 0.90 \\ \hline 45.42 \\ \hline 1.70 \\ \hline \\ \hline \\ - \end{array}$	MY2 34.57 1.69 20.50 58.30 2.00 1.00 1.00 37.95 1.54 1208.14 34.57 1.69 20.50 58.30 3.78 >300 2.00 1.00 1.54 1.69 20.50 58.30 3.78 >300 2.00 1.00 1.54 - 1.54 - - - - - - - - - - - - -	MY3 35.96 1.59 22.62 57.16 4.63 >300 1.89 1.01 39.14 1.46 1208.14 - - - - - - - - - - - - -	MY4 44.93 1.53 29.37 68.54 3.75 >300 1.51 0.94 48.74 1.41 1208.14 - - - - - - - - - - - - -			26.61 2.05 12.98 54.50 3.30 >300 4.80 1.00 30.71 1.77 1208.23 26.61 2.05 12.98 54.50 3.30 >300 4.80 1.00 30.71	MY1 25.90 1.95 13.26 50.60 3.15 >300 4.90 1.00 29.80 1.70 1208.23 25.90 1.95 13.26 50.60 3.15 >300 4.90 1.95 13.26 50.60 3.15 >300 4.90 1.95 13.26 50.60 3.15 >300 4.90 1.95 1.95 1.95 1.95 1.95 1.95 1.95 1.95 1.95 1.95 1.95 1.95 1.95 1.95 1.95 1.95 1.95 1.95 1.90 1.95 1.95 1.95 1.95 1.95 1.95 1.95 1.95 1.95 1.95 1.326 50.60 1.95 1.95 1.326 50.60 1.95 1.95 1.326 50.60 1.95 1.326 50.60 1.95 1.326 50.60 1.95 1.326 50.60 1.95 1.326 50.60 1.95 1.95 1.95 1.90 2.90 1.95 1.95 1.92 2.90 1.95 1.95 1.92 2.90 1.95 1.92 2.90 1.95 1.90 2.90 1.95 1.92 2.90 1.95 1.90 2.90 1.95 1.95 1.90 2.90 1.95 1.90 2.90 1.95 1.90 2.90 1.95 2.90 1.90 2.90 1.90 2.90 1.95 2.90 1.90 2.90 1.90 2.90 1.95 2.90 1.90 2.90 1.90 2.90 1.95 2.90 1.90 2.90 1.90 2.90 2.90 1.90 2.90 1.90 2.90 2.90 1.90 2.90 1.90 2.90 1.90 2.90 1.90 2.90 1.90 2.90 1.90 2.90 1.90 2.90 1.90 2.90 1.00 2.90 2.90 1.00 2.980 2.980	MY2 25.80 1.84 14.00 47.60 2.95 >300 4.90 1.00 29.48 1.61 1208.23 26.80 1.84 14.10 50.98 3.08 >300 >4.70 1.00 30.48	MY3 25.75 1.80 14.31 46.23 3.20 >300 4.93 1.04 29.35 1.58 1208.23 - - - - - - - - - - - - -	MY4 MY5 22.23 1.67 13.31 37.16 3.04 >300 5.71 1.00 24.01 1.55 1208.23 - - - - - - - - - - - - - - - - - - - - - - - - - - -	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+

Note: Per DMS/IRT request, the bank height ratio for MY4 has been calculated using the as-built bankfull area. All other values were calculated using the as-built bankfull elevation, as was done for previous monitoring reports.

Table 11. Morphology and Hydraulic Monitoring Summary

Upper Silver Creek Restoration Project: DMS Project ID No. 94645

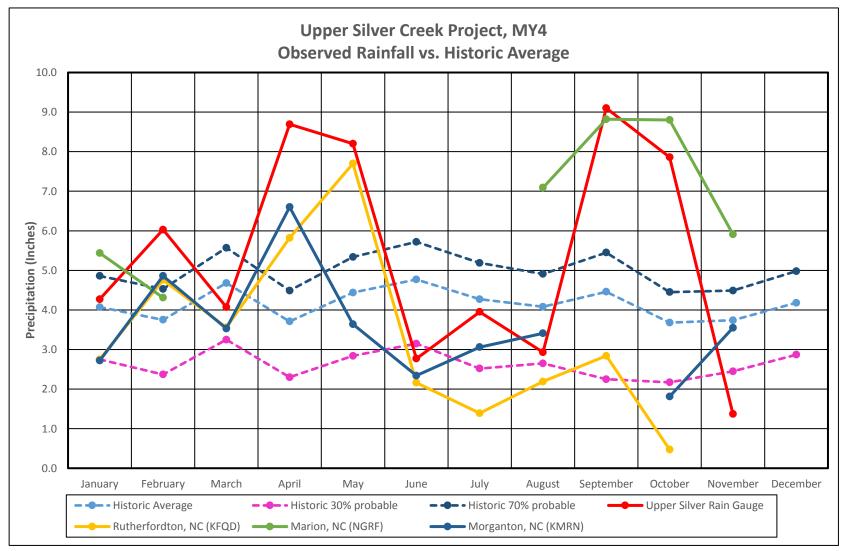
UT1 (495 LF)																												
011 (495 LF)		(ross_section	X-13, Station	1+57 (Riff	e)			(Tross-section	X-14, Statio	n 3+28 (Poo)									1						
Dimension and substrate	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Based on fixed baseline bankfull elevation	Dase	IVI I I	11112	IVI I J	IVI 1 4	IVI I J	1411	Dase	141 1 1	IVI I 2	IVI I J	IVI 1 4	IVI I J	IVI I I	Base	IVI I I	10112	IVI I J	191 1 4	IVI I J	IVI I I	Dase	IVI I I	11112	IVI I J	IVI I 4	IVI I J	IVI I
BF Width (ft)	9.59	9.28	9.20	9.02	11.49			9.32	8.59	6.59	6.43	5.46							1	1	1			1	-		-	
BF Mean Depth (ft)	0.93	0.75	0.76	0.77	0.51			1.98	1.27	1.36	1.09	0.72																
Width/Depth Ratio	10.33	12.32	12.15	11.71	22.53			4.71	6.75	4.84	5.90	7.58											1			+		
BF Cross-sectional Area (ft ²)	8.90	7.00	7.00	6.96	5.87			18.50	10.90	9.00	7.01	3.91																
BF Max Depth (ft)	1.30	1.13	1.09	1.11	1.20			3.70	2.48	2.59	1.76	1.58																
Width of Floodprone Area (ft)	>150	>150	>150	>150	>150			>150	>150	>150	>150	>150																
Entrenchment Ratio	5.30	5.40	5.50	5.59	4.38			8.70	9.40	12.30	12.59	14.83																
Bank Height Ratio	1.00	1.10	1.10	1.10	0.99			1.10	1.20	1.20	1.34	0.92																
Wetted Perimeter (ft)	11.45	10.78	10.72	10.56	12.13			13.28	11.13	9.31	8.61	6.69																
Hydraulic Radius (ft)	0.78	0.65	0.65	0.66	0.48			1.39	0.98	0.97	0.81	0.59																
Fixed baseline bankfull elevation	1203.99	1203.99	1203.99	1203.99	1203.99			1201.60	1201.60	1201.60	1201.59	1201.59																
Based on current/developing bankfull feature																												
• 5	0.50			1	I	1			40.04			1							l.	I								
BF Width (ft)	9.59	9.75	9.96	-	-			9.30	10.96	8.31	-	-											-					
BF Mean Depth (ft)	0.93	0.81	0.82	-	-			1.98	1.36	1.58	-	-																
Width/Depth Ratio BF Cross-sectional Area (ft ²)	10.33 8.90	12.04 7.90	12.11 8.20	-	-			4.71 18.50	8.03 15.00	5.26 13.10	-	-											1					
BF Cross-sectional Area (It-) BF Max Depth (ft)		1.23	1.22						2.89	3.16	-																	
Width of Floodprone Area (ft)	1.30 >150	>150	>150	-	-			3.70 >150	>150	>150	-	-			├						ł	1	+			+ +		
Entrenchment Ratio	5.30	5.20	5.10	-	-			8.70	7.40	9.70	-	-											1					
Bank Height Ratio	1.00	1.00	1.00	-	-			1.10	1.00	1.00	-	-																
Wetted Perimeter (ft)	11.45	11.37	11.60	-	-			13.26	13.68	11.47	-	-																
		0.69	0.71	-	-			1.40	1.10	1.14	-	-																
	0.78																					İ						
Hydraulic Radius (ft)	0.78																											
Hydraulic Radius (ft)	0.78	-		_				-	-	_	_	_																
Hydraulic Radius (ft) Cross Sectional Area between end pins (ft)	-	-	-	- 26.90	-			-	-	-	-	-																
Hydraulic Radius (ft)	0.78 - 38.80	- 43.60	32.90	- 26.90	37.10			-	-	-	-	-																
Hydraulic Radius (ft) Cross Sectional Area between end pins (ft) d50 (mm)	-	-	-	- 26.90	37.10			-	-	-	-	-																
Hydraulic Radius (ft) Cross Sectional Area between end pins (ft)	-	43.60	32.90) 		-		- - ross-section	- - X-16. Statior	- - n 2+53 (Riff]	e)															
Hydraulic Radius (ft) Cross Sectional Area between end pins (ft) d50 (mm) UT2 (310 LF)	-	43.60	32.90	- 26.90 X-15, Station MY3		l) MY5	MY+	- - Base		- - ross-section MY2	- - X-16, Statior MY3	- - n 2+53 (Riffl MY4	e) MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Hydraulic Radius (ft) Cross Sectional Area between end pins (f ²) d50 (mm) UT2 (310 LF) Dimension and substrate	- 38.80	43.60	- 32.90 Cross-section	X-15, Station	n 2+15 (Poo	/	MY+	- - Base	С		-		,	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Hydraulic Radius (ft) Cross Sectional Area between end pins (ft) d50 (mm) UT2 (310 LF)	- 38.80	- 43.60 MY1	- 32.90 Cross-section MY2	X-15, Station	n 2+15 (Poo MY4	/	MY+	- - Base 6.60	C MY1		MY3	MY4	,	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Hydraulic Radius (ft) Cross Sectional Area between end pins (f ²) d50 (mm) UT2 (310 LF) Dimension and substrate Based on fixed baseline bankfull elevation	- 38.80 Base	43.60	- 32.90 Cross-section	X-15, Station MY3	n 2+15 (Poo	/	MY+		С	MY2	-		,	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Hydraulic Radius (ft) Cross Sectional Area between end pins (f ²) d50 (mm) UT2 (310 LF) Dimension and substrate Based on fixed baseline bankfull elevation BF Width (ft)	- 38.80 Base	43.60 MY1 6.42	- 32.90 Cross-section MY2 5.55 0.45	X-15, Station MY3 5.46	n 2+15 (Poo MY4 5.01	/	MY+	6.60	C MY1 5.82	MY2 4.68	MY3	MY4 5.55	,	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Hydraulic Radius (ft) Cross Sectional Area between end pins (ft) d50 (mm) UT2 (310 LF) Dimension and substrate Based on fixed baseline bankfull elevation BF Width (ft) BF Mean Depth (ft)	- 38.80 Base 7.33 0.83	43.60 MY1 6.42 0.46	- 32.90 Cross-section MY2 5.55	X-15, Station MY3 5.46 0.37	n 2+15 (Poo MY4 5.01 0.23	/	MY+	6.60 0.41	C MY1 5.82 0.37	MY2 4.68 0.32	MY3 5.11 0.27	MY4 5.55 0.31	,	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Hydraulic Radius (ft) Cross Sectional Area between end pins (f ²) d50 (mm) UT2 (310 LF) Dimension and substrate Based on fixed baseline bankfull elevation BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio	- 38.80 Base 7.33 0.83 8.88	43.60 MY1 6.42 0.46 13.87	- 32.90 Cross-section MY2 5.55 0.45 12.28	X-15, Station MY3 5.46 0.37 14.76	n 2+15 (Poo MY4 5.01 0.23 21.78	/	MY+	6.60 0.41 15.99	C MY1 5.82 0.37 15.71	MY2 4.68 0.32 14.47	MY3 5.11 0.27 18.93	MY4 5.55 0.31 17.90	,	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Hydraulic Radius (ft) Cross Sectional Area between end pins (f ²) d50 (mm) UT2 (310 LF) Dimension and substrate Based on fixed baseline bankfull elevation BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft ²)	- 38.80 Base 7.33 0.83 8.88 6.10	- 43.60 MY1 6.42 0.46 13.87 3.00	- 32.90 Cross-section MY2 5.55 0.45 12.28 2.50 0.69 >100	X-15, Station MY3 5.46 0.37 14.76 2.02	n 2+15 (Poo MY4 5.01 0.23 21.78 1.17	/	MY+	6.60 0.41 15.99 2.70	C MY1 5.82 0.37 15.71 2.20	MY2 4.68 0.32 14.47 1.50	MY3 5.11 0.27 18.93 1.37	MY4 5.55 0.31 17.90 1.72	,	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Hydraulic Radius (ft) Cross Sectional Area between end pins (ft) d50 (mm) UT2 (310 LF) Dimension and substrate Based on fixed baseline bankfull elevation BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft ²) BF Max Depth (ft) Width of Floodprone Area (ft) Entrenchment Ratio	- 38.80 Base 7.33 0.83 8.88 6.10 1.66 >100 9.20			X-15, Station MY3 5.46 0.37 14.76 2.02 0.69 >100 12.34	n 2+15 (Poo MY4 5.01 0.23 21.78 1.17 0.37 >100 11.39	/	MY+	6.60 0.41 15.99 2.70 0.91 >100 7.00	C MY1 5.82 0.37 15.71 2.20 0.77 >100 7.10	MY2 4.68 0.32 14.47 1.50 0.63 >100 8.70	MY3 5.11 0.27 18.93 1.37 0.66 >100 7.97	MY4 5.55 0.31 17.90 1.72 0.80 >100 8.29	,	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Hydraulic Radius (ft) Cross Sectional Area between end pins (ft) d50 (mm) UT2 (310 LF) Dimension and substrate Based on fixed baseline bankfull elevation BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft²) BF Max Depth (ft) Width of Floodprone Area (ft) Entrenchment Ratio Bank Height Ratio	- 38.80 Base 7.33 0.83 8.88 6.10 1.66 >100 9.20 1.10	- 43.60 MY1 6.42 0.46 13.87 3.00 0.84 >100 10.50 1.20		X-15, Station MY3 5.46 0.37 14.76 2.02 0.69 >100 12.34 1.30	n 2+15 (Poo MY4 5.01 0.23 21.78 1.17 0.37 >100 11.39 0.92	/	MY+	6.60 0.41 15.99 2.70 0.91 >100 7.00 1.20	C MY1 5.82 0.37 15.71 2.20 0.77 >100 7.10 1.00	MY2 4.68 0.32 14.47 1.50 0.63 >100 8.70 1.20	MY3 5.11 0.27 18.93 1.37 0.66 >100 7.97 1.23	MY4 5.55 0.31 17.90 1.72 0.80 >100 8.29 0.97	,	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Hydraulic Radius (ft) Cross Sectional Area between end pins (ft) d50 (mm) UT2 (310 LF) Dimension and substrate Based on fixed baseline bankfull elevation BF Width (ft) BF Width (ft) BF Cross-sectional Area (ft ²) BF Max Depth (ft) Width of Floodprone Area (ft ²) BF Max Depth (ft) Width of Floodprone Area (ft ²) BF Max Depth (ft) Width of Floodprone Area (ft) Entrenchment Ratio Bank Height Ratio Wetted Perimeter (ft)	- 38.80 Base 7.33 0.83 8.88 6.10 1.66 >100 9.20 1.10 8.99	- 43.60 MY1 6.42 0.46 13.87 3.00 0.84 >100 10.50 1.20 7.34	- 32.90 Cross-section MY2 5.55 0.45 12.28 2.50 0.69 >100 12.10 1.40 6.45	X-15, Station MY3 5.46 0.37 14.76 2.02 0.69 >100 12.34 1.30 6.20	n 2+15 (Poo MY4 5.01 0.23 21.78 1.17 0.37 >100 11.39 0.92 5.14	/	MY+	6.60 0.41 15.99 2.70 0.91 >100 7.00 1.20 7.42	C MY1 5.82 0.37 15.71 2.20 0.77 >100 7.10 1.00 6.56	MY2 4.68 0.32 14.47 1.50 0.63 >100 8.70 1.20 5.32	MY3 5.11 0.27 18.93 1.37 0.66 >100 7.97 1.23 5.65	MY4 5.55 0.31 17.90 1.72 0.80 >100 8.29 0.97 6.15	,	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Hydraulic Radius (ft) Cross Sectional Area between end pins (ft) d50 (mm) UT2 (310 LF) Dimension and substrate Based on fixed baseline bankfull elevation BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft ²) BF Max Depth (ft) Width of Floodprone Area (ft) Entrenchment Ratio Bank Height Ratio Wetted Perimeter (ft) Hydraulic Radius (ft)	- 38.80 Base 7.33 0.83 8.88 6.10 1.66 >100 9.20 1.10 8.99 0.68	- 43.60 MY1 6.42 0.46 13.87 3.00 0.84 >100 10.50 1.20 7.34 0.41	- 32.90 Cross-section MY2 5.55 0.45 12.28 2.50 0.69 >100 12.10 1.40 6.45 0.39	X-15, Station MY3 5.46 0.37 14.76 2.02 0.69 >100 12.34 1.30 6.20 0.33	n 2+15 (Poo MY4 5.01 0.23 21.78 1.17 0.37 >100 11.39 0.92 5.14 0.23	/	MY+	$\begin{array}{c} 6.60\\ 0.41\\ 15.99\\ 2.70\\ 0.91\\ >100\\ 7.00\\ 1.20\\ 7.42\\ 0.36\end{array}$	C MY1 5.82 0.37 15.71 2.20 0.77 >100 7.10 1.00 6.56 0.34	MY2 4.68 0.32 14.47 1.50 0.63 >100 8.70 1.20 5.32 0.28	MY3 5.11 0.27 18.93 1.37 0.66 >100 7.97 1.23 5.65 0.24	MY4 5.55 0.31 17.90 1.72 0.80 >100 8.29 0.97 6.15 0.28	,	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Hydraulic Radius (ft) Cross Sectional Area between end pins (ft) d50 (mm) UT2 (310 LF) Dimension and substrate Based on fixed baseline bankfull elevation BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft ²) BF Max Depth (ft) Width of Floodprone Area (ft) Entrenchment Ratio Bank Height Ratio Wetted Perimeter (ft)	- 38.80 Base 7.33 0.83 8.88 6.10 1.66 >100 9.20 1.10 8.99	- 43.60 MY1 6.42 0.46 13.87 3.00 0.84 >100 10.50 1.20 7.34	- 32.90 Cross-section MY2 5.55 0.45 12.28 2.50 0.69 >100 12.10 1.40 6.45	X-15, Station MY3 5.46 0.37 14.76 2.02 0.69 >100 12.34 1.30 6.20	n 2+15 (Poo MY4 5.01 0.23 21.78 1.17 0.37 >100 11.39 0.92 5.14	/	MY+	6.60 0.41 15.99 2.70 0.91 >100 7.00 1.20 7.42	C MY1 5.82 0.37 15.71 2.20 0.77 >100 7.10 1.00 6.56	MY2 4.68 0.32 14.47 1.50 0.63 >100 8.70 1.20 5.32	MY3 5.11 0.27 18.93 1.37 0.66 >100 7.97 1.23 5.65	MY4 5.55 0.31 17.90 1.72 0.80 >100 8.29 0.97 6.15 0.28	,	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Hydraulic Radius (ft) Cross Sectional Area between end pins (ft) d50 (mm) UT2 (310 LF) Dimension and substrate Based on fixed baseline bankfull elevation BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft ²) BF Max Depth (ft) Width of Floodprone Area (ft) Entrenchment Ratio Bank Height Ratio Wetted Perimeter (ft) Hydraulic Radius (ft)	- 38.80 Base 7.33 0.83 8.88 6.10 1.66 >100 9.20 1.10 8.99 0.68	- 43.60 MY1 6.42 0.46 13.87 3.00 0.84 >100 10.50 1.20 7.34 0.41	- 32.90 Cross-section MY2 5.55 0.45 12.28 2.50 0.69 >100 12.10 1.40 6.45 0.39	X-15, Station MY3 5.46 0.37 14.76 2.02 0.69 >100 12.34 1.30 6.20 0.33	n 2+15 (Poo MY4 5.01 0.23 21.78 1.17 0.37 >100 11.39 0.92 5.14 0.23	/	MY+	$\begin{array}{c} 6.60\\ 0.41\\ 15.99\\ 2.70\\ 0.91\\ >100\\ 7.00\\ 1.20\\ 7.42\\ 0.36\end{array}$	C MY1 5.82 0.37 15.71 2.20 0.77 >100 7.10 1.00 6.56 0.34	MY2 4.68 0.32 14.47 1.50 0.63 >100 8.70 1.20 5.32 0.28	MY3 5.11 0.27 18.93 1.37 0.66 >100 7.97 1.23 5.65 0.24	MY4 5.55 0.31 17.90 1.72 0.80 >100 8.29 0.97 6.15 0.28	,	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Hydraulic Radius (ft) Cross Sectional Area between end pins (ft) d50 (mm) UT2 (310 LF) Dimension and substrate Based on fixed baseline bankfull elevation BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft ²) BF Max Depth (ft) Width of Floodprone Area (ft) Entrenchment Ratio Bank Height Ratio Wetted Perimeter (ft) Hydraulic Radius (ft) Fixed baseline bankfull elevatior Based on current/developing bankfull feature	- 38.80 Base 7.33 0.83 8.88 6.10 1.66 >100 9.20 1.10 8.99 0.68 1201.90		- 32.90 Cross-section MY2 5.55 0.45 12.28 2.50 0.69 >100 12.10 1.40 6.45 0.39 1201.90	X-15, Station MY3 5.46 0.37 14.76 2.02 0.69 >100 12.34 1.30 6.20 0.33	n 2+15 (Poo MY4 5.01 0.23 21.78 1.17 0.37 >100 11.39 0.92 5.14 0.23 1201.91	/	MY+	$\begin{array}{c} 6.60\\ 0.41\\ 15.99\\ 2.70\\ 0.91\\ >100\\ 7.00\\ 1.20\\ 7.42\\ 0.36\\ 1201.21\\ \end{array}$	C MY1 5.82 0.37 15.71 2.20 0.77 >100 7.10 1.00 6.56 0.34 1201.21	MY2 4.68 0.32 14.47 1.50 0.63 >100 8.70 1.20 5.32 0.28 1201.21	MY3 5.11 0.27 18.93 1.37 0.66 >100 7.97 1.23 5.65 0.24	MY4 5.55 0.31 17.90 1.72 0.80 >100 8.29 0.97 6.15 0.28 1201.21	,	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Hydraulic Radius (ft) Cross Sectional Area between end pins (ft) d50 (mm) UT2 (310 LF) Dimension and substrate Based on fixed baseline bankfull elevation BF Width (ft) BF Man Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft) BF Max Depth (ft) Width of Floodprone Area (ft) Entrenchment Ratio Bank Height Ratio Wetted Perimeter (ft) Hydraulic Radius (ft) Fixed baseline bankfull elevatior Based on current/developing bankfull feature BF Width (ft)	- 38.80 Base 7.33 0.83 8.88 6.10 1.66 >100 9.20 1.10 8.99 0.68 1201.90 7.33	- 43.60 MY1 6.42 0.46 13.87 3.00 0.84 >100 10.50 1.20 7.34 0.41 1201.90 8.35	- 32.90 Cross-section MY2 5.55 0.45 12.28 2.50 0.69 >100 12.10 1.40 6.45 0.39 1201.90 6.43	X-15, Station MY3 5.46 0.37 14.76 2.02 0.69 >100 12.34 1.30 6.20 0.33	n 2+15 (Poo MY4 5.01 0.23 21.78 1.17 0.37 >100 11.39 0.92 5.14 0.23 1201.91	/	MY+	$\begin{array}{c} 6.60 \\ 0.41 \\ 15.99 \\ 2.70 \\ 0.91 \\ >100 \\ 7.00 \\ 1.20 \\ 7.42 \\ 0.36 \\ 1201.21 \\ \end{array}$	C MY1 5.82 0.37 15.71 2.20 0.77 >100 7.10 1.00 6.56 0.34 1201.21 5.82	MY2 4.68 0.32 14.47 1.50 0.63 >100 8.70 1.20 5.32 0.28 1201.21 5.46	MY3 5.11 0.27 18.93 1.37 0.66 >100 7.97 1.23 5.65 0.24 1201.21	MY4 5.55 0.31 17.90 1.72 0.80 >100 8.29 0.97 6.15 0.28 1201.21 -	,	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Hydraulic Radius (ft) Cross Sectional Area between end pins (ft) d50 (mm) UT2 (310 LF) Dimension and substrate Based on fixed baseline bankfull elevation BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft?) BF Max Depth (ft) Width of Floodprone Area (ft) Entrenchment Ratio Bank Height Ratio Wetted Perimeter (ft) Hydraulic Radius (ft) Fixed baseline bankfull levatior Based on current/developing bankfull feature BF Width (ft)	- 38.80 Base 7.33 0.83 8.88 6.10 1.66 >100 9.20 1.10 8.99 0.68 1201.90 7.33 0.83	- 43.60 MY1 6.42 0.46 13.87 3.00 0.84 >100 10.50 1.20 7.34 0.41 1201.90 8.35 0.46	- 32.90 Cross-section MY2 5.55 0.45 12.28 2.50 0.69 >100 12.10 1.40 6.45 0.39 1201.90 6.43 0.52	X-15, Station MY3 5.46 0.37 14.76 2.02 0.69 >100 12.34 1.30 6.20 0.33 1201.91	n 2+15 (Poo MY4 5.01 0.23 21.78 1.17 0.37 >100 11.39 0.92 5.14 0.23 1201.91	/	MY+	$\begin{array}{c} 6.60\\ 0.41\\ 15.99\\ 2.70\\ 0.91\\ >100\\ 7.00\\ 1.20\\ 7.42\\ 0.36\\ 1201.21\\ \hline \\ 6.60\\ 0.41\\ \end{array}$	C MY1 5.82 0.37 15.71 2.20 0.77 >100 7.10 1.00 6.56 0.34 1201.21 5.82 0.37	MY2 4.68 0.32 14.47 1.50 0.63 >100 8.70 1.20 5.32 0.28 1201.21 5.46 0.38	MY3 5.11 0.27 18.93 1.37 0.66 >100 7.97 1.23 5.65 0.24 1201.21 -	MY4 5.55 0.31 17.90 1.72 0.80 >100 8.29 0.97 6.15 0.28 1201.21 -	,	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Hydraulic Radius (ft) Cross Sectional Area between end pins (ft) d50 (mm) UT2 (310 LF) Dimension and substrate Based on fixed baseline bankfull elevation BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft ²) BF Max Depth (ft) Width of Floodprone Area (ft) Bank Height Ratio Bank Height Ratio Bank Height Ratio Based on current/developing bankfull elevatior BF Width (ft) BF Width (ft) BF Mean Depth (ft)	- 38.80 Base 7.33 0.83 8.88 6.10 1.66 >100 9.20 1.10 8.99 0.68 1201.90 7.33 0.83 8.88	- 43.60 MY1 6.42 0.46 13.87 3.00 0.84 >100 10.50 1.20 7.34 0.41 1201.90 8.35 0.46 13.87	- 32.90 Cross-section MY2 5.55 0.45 12.28 2.50 0.69 >100 12.10 1.40 6.45 0.39 1201.90 6.43 0.52 12.33	X-15, Station MY3 5.46 0.37 14.76 2.02 0.69 >100 12.34 1.30 6.20 0.33 1201.91	n 2+15 (Poo MY4 5.01 0.23 21.78 1.17 0.37 >100 11.39 0.92 5.14 0.23 1201.91	/	MY+	$\begin{array}{c} 6.60\\ 0.41\\ 15.99\\ 2.70\\ 0.91\\ >100\\ 7.00\\ 1.20\\ 7.42\\ 0.36\\ 1201.21\\ \hline \\ 6.60\\ 0.41\\ 15.99\\ \end{array}$	C MY1 5.82 0.37 15.71 2.20 0.77 >100 7.10 7.10 7.10 6.56 0.34 1201.21 5.82 0.37 15.71	MY2 4.68 0.32 14.47 1.50 0.63 >100 8.70 1.20 5.32 0.28 1201.21 5.46 0.38 14.50	MY3 5.11 0.27 18.93 1.37 0.66 >100 7.97 1.23 5.65 0.24 1201.21 - -	MY4 5.55 0.31 17.90 1.72 0.80 >100 8.29 0.97 6.15 0.28 1201.21 -	,	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Hydraulic Radius (ft) Cross Sectional Area between end pins (ft) d50 (mm) UT2 (310 LF) Dimension and substrate Based on fixed baseline bankfull elevation BF Width (ft) BF Max Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft²) BF Max Depth (ft) Width of Floodprone Area (ft) Entrenchment Ratio Bank Height Ratio Wetted Perimeter (ft) Hydraulic Radius (ft) Fixed baseline bankfull elevatior Based on current/developing bankfull feature BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio	- 38.80 Base 7.33 0.83 8.88 6.10 1.66 >100 9.20 1.10 8.99 0.68 1201.90 7.33 0.83 8.88 6.10	- 43.60 MY1 6.42 0.46 13.87 3.00 0.84 >100 10.50 1.20 7.34 0.41 1201.90 8.35 0.46 13.87 4.00	- 32.90 Cross-section MY2 5.55 0.45 12.28 2.50 0.69 >100 12.10 1.40 6.45 0.39 1201.90 6.43 0.52 12.33 3.30	X-15, Station MY3 5.46 0.37 14.76 2.02 0.69 >100 12.34 1.30 6.20 0.33 1201.91	n 2+15 (Poo MY4 5.01 0.23 21.78 1.17 0.37 >100 11.39 0.92 5.14 0.23 1201.91	/	MY+	$\begin{array}{c} 6.60\\ 0.41\\ 15.99\\ 2.70\\ 0.91\\ >100\\ 7.00\\ 1.20\\ 7.42\\ 0.36\\ 1201.21\\ \hline \\ 6.60\\ 0.41\\ 15.99\\ 2.70\\ \end{array}$	C MY1 5.82 0.37 15.71 2.20 0.77 >100 7.10 7.10 7.10 6.56 0.34 1201.21 5.82 0.37 15.71 2.20	MY2 4.68 0.32 14.47 1.50 0.63 >100 8.70 1.20 5.32 0.28 1201.21 5.46 0.38 14.50 2.10	MY3 5.11 0.27 18.93 1.37 0.66 >100 7.97 1.23 5.65 0.24 1201.21 - - -	MY4 5.55 0.31 17.90 1.72 0.80 >100 8.29 0.97 6.15 0.28 1201.21 - -	,	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Hydraulic Radius (ft) Cross Sectional Area between end pins (ft) d50 (mm) UT2 (310 LF) Dimension and substrate Based on fixed baseline bankfull elevation BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft²) BF Max Depth (ft) Width of Floodprone Area (ft) Entrenchment Ratio Bank Height Ratio Wetted Perimeter (ft) Hydraulic Radius (ft) Fixed baseline bankfull feature BF Width (ft) BF Mean Depth (ft) Hydraulic Radius (ft) Fixed baseline bankfull feature BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio BF Max Depth (ft)	- 38.80 Base 7.33 0.83 8.88 6.10 1.66 >100 9.20 1.10 8.99 0.68 1201.90 7.33 0.83 8.88 6.10 1.66	- 43.60 MY1 6.42 0.46 13.87 3.00 0.84 >100 10.50 1.20 7.34 0.41 1201.90 8.35 0.46 13.87 4.00 0.98	- 32.90 Cross-section MY2 5.55 0.45 12.28 2.50 0.69 >100 12.10 1.40 6.45 0.39 1201.90 6.43 0.52 12.33 3.30 0.83	X-15, Station MY3 5.46 0.37 14.76 2.02 0.69 ≥100 12.34 1.30 6.20 0.33 1201.91 - - - - -	n 2+15 (Poo MY4 5.01 0.23 21.78 1.17 0.37 >100 11.39 0.92 5.14 0.23 1201.91	/	MY+	$\begin{array}{c} 6.60\\ 0.41\\ 15.99\\ 2.70\\ 0.91\\ >100\\ 7.00\\ 1.20\\ 7.42\\ 0.36\\ 1201.21\\ \hline \\ 6.60\\ 0.41\\ 15.99\\ 2.70\\ 0.91\\ \hline \end{array}$	C MY1 5.82 0.37 15.71 2.20 0.77 >100 7.10 1.00 6.56 0.34 1201.21 5.82 0.37 15.71 2.20 0.77	MY2 4.68 0.32 14.47 1.50 0.63 >100 8.70 1.20 5.32 0.28 1201.21 5.46 0.38 14.50 2.10 0.74	MY3 5.11 0.27 18.93 1.37 0.66 >100 7.97 1.23 5.65 0.24 1201.21 - - - -	MY4 5.55 0.31 17.90 1.72 0.80 >100 8.29 0.97 6.15 1201.21 - - - - -	,	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Hydraulic Radius (ft) Cross Sectional Area between end pins (ft) d50 (mm) UT2 (310 LF) Dimension and substrate Based on fixed baseline bankfull elevation BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft²) BF Max Depth (ft) Width of Floodprone Area (ft) Entrenchment Ratio Bank Height Ratio Wetted Perimeter (ft) Hydraulic Radius (ft) Fixed baseline bankfull leevatior Based on current/developing bankfull feature BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft²) BF Cross-sectional Area (ft²) BF Max Depth (ft) Width of Floodprone Area (ft²)	- 38.80 Base 7.33 0.83 8.88 6.10 1.66 >100 9.20 1.10 8.99 0.68 1201.90 7.33 0.83 8.88 6.10 1.66 >100 1.10 1.66 >100 1.10 1.66 - 1.00 1.66 - 1.00	- 43.60 MY1 6.42 0.46 13.87 3.00 0.84 >100 10.50 1.20 7.34 0.41 1201.90 8.35 0.46 13.87 4.00 0.98 >100	- 32.90 Cross-section MY2 5.55 0.45 12.28 2.50 0.69 >100 12.10 1.40 6.45 0.39 1201.90 6.43 0.52 12.33 3.30 0.83 >100	X-15, Station MY3 5.46 0.37 14.76 2.02 0.69 >100 12.34 1.30 6.20 0.33 1201.91 - - - - - - -	n 2+15 (Poo MY4 5.01 0.23 21.78 1.17 0.37 >100 11.39 0.92 5.14 0.23 1201.91 - - - -	/	MY+	$\begin{array}{c} 6.60\\ 0.41\\ 15.99\\ 2.70\\ 0.91\\ >100\\ 7.00\\ 1.20\\ 7.42\\ 0.36\\ 1201.21\\ \hline \\ \hline \\ 6.60\\ 0.41\\ 15.99\\ 2.70\\ 0.91\\ >100\\ \end{array}$	C MY1 5.82 0.37 15.71 2.20 0.77 >100 7.10 1.00 6.56 0.34 1201.21 5.82 0.37 15.71 2.20 0.77 >100	MY2 4.68 0.32 14.47 1.50 0.63 >100 8.70 1.20 5.32 0.28 1201.21 5.46 0.38 14.50 2.10 0.74 >100	MY3 5.11 0.27 18.93 1.37 0.66 >100 7.97 1.23 5.65 0.24 1201.21 - - - - - - -	MY4 5.55 0.31 17.90 1.72 0.80 >100 8.29 0.97 6.15 0.28 1201.21 - - - - -	,	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Hydraulic Radius (ft) Cross Sectional Area between end pins (ft) d50 (mm) UT2 (310 LF) Dimension and substrate Based on fixed baseline bankfull elevation BF Width (ft) BF Man Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft?) BF Max Depth (ft) Width of Floodprone Area (ft) Entrenchment Ratio Bank Height Ratio Wetted Perimeter (ft) Hydraulic Radius (ft) Fixed baseline bankfull levatior Based on current/developing bankfull feature BF Width (ft) BF Max Depth (ft) Width/Depth Ratio BF Max Depth (ft) Width of Floodprone Area (ft?) BF Max Depth (ft) Width of Floodprone Area (ft?) BF Max Depth (ft) Width of Floodprone Area (ft) Entrenchment Ratio		- 43.60 MY1 6.42 0.46 13.87 3.00 0.84 >100 10.50 1.20 7.34 0.41 1201.90 8.35 0.46 13.87 4.00 0.98 >100 8.10	- 32.90 Cross-section MY2 5.55 0.45 12.28 2.50 0.69 >100 12.10 1.40 6.45 0.39 1201.90 6.43 0.52 12.33 3.30 0.83 >100 10.50	X-15, Station MY3 5.46 0.37 14.76 2.02 0.69 ≥100 12.34 1.30 6.20 0.33 1201.91 - - - - -	n 2+15 (Poo MY4 5.01 0.23 21.78 1.17 0.37 >100 11.39 0.92 5.14 0.23 1201.91	/	MY+	$\begin{array}{c} 6.60\\ 0.41\\ 15.99\\ 2.70\\ 0.91\\ >100\\ 7.00\\ 1.20\\ 7.42\\ 0.36\\ 1201.21\\ \hline \\ 6.60\\ 0.41\\ 15.99\\ 2.70\\ 0.91\\ >100\\ 7.00\\ \end{array}$	C MY1 5.82 0.37 15.71 2.20 0.77 >100 7.10 1.00 6.56 0.34 1201.21 5.82 0.37 15.71 2.20 0.77 >100 7.10	MY2 4.68 0.32 14.47 1.50 0.63 >100 8.70 1.20 5.32 0.28 1201.21 5.46 0.38 14.50 2.10 0.74 >100 8.10	MY3 5.11 0.27 18.93 1.37 0.66 >100 7.97 1.23 5.65 0.24 1201.21 - - - -	MY4 5.55 0.31 17.90 1.72 0.80 >100 8.29 0.97 6.15 1201.21 - - - - -	,	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Hydraulic Radius (ft) Cross Sectional Area between end pins (ft) d50 (mm) UT2 (310 LF) Dimension and substrate Based on fixed baseline bankfull elevation BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft²) BF Max Depth (ft) Width of Floodprone Area (ft) Entrenchment Ratio Bask Height Ratio Wetted Perimeter (ft) Hydraulic Radius (ft) Fixed baseline bankfull levatior Based on current/developing bankfull feature BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio Based on current/developing bankfull feature BF Width (ft) BF Cross-sectional Area (ft²) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft²) BF Max Depth (ft) Width of Floodprone Area (ft²) BF Max Depth (ft) Width of Floodprone Area (ft²) BF Max Depth (ft) BF Max Depth (ft) Based on current/developing bankfull feature	- 38.80 Base 7.33 0.83 8.88 6.10 1.66 >100 9.20 1.10 8.99 0.68 1201.90 7.33 0.83 8.88 6.10 1.66 >100 1.10 1.66 >100 1.10 1.66 - 1.00 1.66 - 1.00	- 43.60 MY1 6.42 0.46 13.87 3.00 0.84 >100 10.50 1.20 7.34 0.41 1201.90 8.35 0.46 13.87 4.00 0.98 >100	- 32.90 Cross-section MY2 5.55 0.45 12.28 2.50 0.69 >100 12.10 1.40 6.45 0.39 1201.90 6.43 0.52 12.33 3.30 0.83 >100	X-15, Station MY3 5.46 0.37 14.76 2.02 0.69 >100 12.34 1.30 6.20 0.33 1201.91 - - - - - - - - - - -	n 2+15 (Poo MY4 5.01 0.23 21.78 1.17 0.37 >100 11.39 0.92 5.14 0.23 1201.91 - - - - - - -	/	MY+	$\begin{array}{c} 6.60\\ 0.41\\ 15.99\\ 2.70\\ 0.91\\ >100\\ 7.00\\ 1.20\\ 7.42\\ 0.36\\ 1201.21\\ \hline \\ \hline \\ 6.60\\ 0.41\\ 15.99\\ 2.70\\ 0.91\\ >100\\ \end{array}$	C MY1 5.82 0.37 15.71 2.20 0.77 >100 7.10 1.00 6.56 0.34 1201.21 5.82 0.37 15.71 2.20 0.77 >100	MY2 4.68 0.32 14.47 1.50 0.63 >100 8.70 1.20 5.32 0.28 1201.21 5.46 0.38 14.50 2.10 0.74 >100 8.10 1.10	MY3 5.11 0.27 18.93 1.37 0.66 >100 7.97 1.23 5.65 0.24 1201.21 - - - - - - - - -	MY4 5.55 0.31 17.90 1.72 0.80 >100 8.29 0.97 6.15 0.28 1201.21 - - - - - - - -	,	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Hydraulic Radius (ft) Cross Sectional Area between end pins (ft) d50 (mm) UT2 (310 LF) Dimension and substrate Based on fixed baseline bankfull elevation BF Width (ft) BF Man Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft?) BF Max Depth (ft) Width of Floodprone Area (ft) Entrenchment Ratio Bank Height Ratio Wetted Perimeter (ft) Hydraulic Radius (ft) Fixed baseline bankfull levatior Based on current/developing bankfull feature BF Width (ft) BF Max Depth (ft) Width/Depth Ratio BF Max Depth (ft) Width of Floodprone Area (ft?) BF Max Depth (ft) Width of Floodprone Area (ft?) BF Max Depth (ft) Width of Floodprone Area (ft) Entrenchment Ratio	- 38.80 - - - - - - - - - - - - -	- 43.60 MY1 6.42 0.46 13.87 3.00 0.84 >100 10.50 1.20 7.34 0.41 1201.90 8.35 0.46 13.87 4.00 0.98 >100 8.10 1.10	- 32.90 Cross-section MY2 5.55 0.45 12.28 2.50 0.69 >100 12.10 1.40 6.45 0.39 1201.90 6.43 0.52 12.33 3.30 0.83 >100 10.50 1.10	X-15, Station MY3 5.46 0.37 14.76 2.02 0.69 >100 12.34 1.30 6.20 0.33 1201.91 - - - - - - - - - - - - - - - - - -	n 2+15 (Poo MY4 5.01 0.23 21.78 1.17 0.37 >100 11.39 0.92 5.14 0.23 1201.91 - - - - - - - - - - - -	/	MY+	$\begin{array}{c} 6.60\\ 0.41\\ 15.99\\ 2.70\\ 0.91\\ >100\\ 7.00\\ 1.20\\ 7.42\\ 0.36\\ 1201.21\\ \hline \\ 6.60\\ 0.41\\ 15.99\\ 2.70\\ 0.91\\ >100\\ 7.00\\ 1.20\\ \hline \end{array}$	C MY1 5.82 0.37 15.71 2.20 0.77 >100 7.10 1.00 6.56 0.34 1201.21 5.82 0.37 15.71 2.20 0.77 >100 7.10 1.00 7.10	MY2 4.68 0.32 14.47 1.50 0.63 >100 8.70 1.20 5.32 0.28 1201.21 5.46 0.38 14.50 2.10 0.74 >100 8.10	MY3 5.11 0.27 18.93 1.37 0.66 >100 7.97 1.23 5.65 0.24 1201.21 - - - - - - - - - - - - -	MY4 5.55 0.31 17.90 1.72 0.80 >100 8.29 0.97 6.15 0.28 1201.21 - - - - - - - - - - - - -	,	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Hydraulic Radius (ft) Cross Sectional Area between end pins (ft) d50 (mm) UT2 (310 LF) Dimension and substrate Based on fixed baseline bankfull elevation BF Weidth (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft? BF Max Depth (ft) Width of Floodprone Area (ft) Entrenchment Ratio Bank Height Ratio Wetted Perimeter (ft) Hydraulic Radius (ft) Fixed baseline bankfull elevatior Based on current/developing bankfull feature BF Width (ft) BF Cross-sectional Area (ft?) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft?) BF Mean Depth (ft) Width of Floodprone Area (ft?) BF Max Depth (ft) Width of Floodprone Area (ft?) BF Max Depth (ft) Width of Floodprone Area (ft?) BF Max Depth (ft) Width of Floodprone Area (ft?) Bank Height Ratio Bank Height Ratio Wetted Perimeter (ft) Hydraulic Radius (ft)	- 38.80 - - - - - - - - - - - - -	- 43.60 MY1 6.42 0.46 13.87 3.00 0.84 >100 10.50 1.20 7.34 0.41 1201.90 8.35 0.46 13.87 4.00 0.98 >100 8.10 1.10 9.27 0.43	- 32.90 Cross-section MY2 5.55 0.45 12.28 2.50 0.69 >100 12.10 1.40 6.45 0.39 1201.90 6.43 0.52 12.33 3.30 0.83 >100 1.050 1.10 7.47 0.44	X-15, Station MY3 5.46 0.37 14.76 2.02 0.69 >100 12.34 1.30 6.20 0.33 1201.91 - - - - - - - - - - - - - - - - - - -	n 2+15 (Poo MY4 5.01 0.23 21.78 1.17 0.37 >100 11.39 0.92 5.14 0.23 1201.91 - - - - - - - - - - - - -	/	MY+	$\begin{array}{c} 6.60\\ 0.41\\ 15.99\\ 2.70\\ 0.91\\ >100\\ 7.00\\ 1.20\\ 7.42\\ 0.36\\ 1201.21\\ \hline \\ 6.60\\ 0.41\\ 15.99\\ 2.70\\ 0.91\\ >100\\ 7.00\\ 1.20\\ 7.42\\ 0.36\\ \hline \end{array}$	C MY1 5.82 0.37 15.71 2.20 0.77 >100 7.10 1.00 6.56 0.34 1201.21 5.82 0.37 15.71 2.20 0.77 >100 7.10 1.00 6.56 0.34 1201.21 5.82 0.37 15.71 2.20 0.77 >100 7.10 1.00 6.56 0.34 1201.21 5.82 0.37 15.71 2.20 0.77 >100 7.10 1.00 6.56 0.34 1201.21 5.82 0.37 15.71 2.20 0.77 >100 7.10 1.00 6.56 0.34 1201.21 5.82 0.37 15.71 2.20 0.77 >100 0.77 >100 0.77 >100 0.77 >100 0.77 2.00 0.77 >100 0.77 2.00 0.77 2.00 0.77 0.34 1201.21 0.77 0.77 0.77 0.77 0.07 0.77 0.07 0.77 0.07 0.34 1.00 0.57 0.37 15.71 2.20 0.77 0.77 0.07 0.77 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.00 0.34 0.00 0.56 0.34 0.37 15.71 2.20 0.77 0.100 0.00 0	MY2 4.68 0.32 14.47 1.50 0.63 >100 8.70 1.20 5.32 0.28 1201.21 5.46 0.38 14.50 2.10 0.74 >100 8.10 1.10 6.22 0.34	MY3 5.11 0.27 18.93 1.37 0.66 >100 7.97 1.23 5.65 0.24 1201.21 - - - - - - - - - - - - -	MY4 5.55 0.31 17.90 1.72 0.80 >100 8.29 0.97 6.15 0.28 1201.21 - - - - - - - - - - - - -	,	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Hydraulic Radius (ft) Cross Sectional Area between end pins (ft) d50 (mm) UT2 (310 LF) Dimension and substrate Based on fixed baseline bankfull elevation BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft?) BF Max Depth (ft) Width of Floodprone Area (ft) Bank Height Ratio Bank Height Ratio Based on current/developing bankfull elevatior BF Mean Depth (ft) Hydraulic Radius (ft) Fixed baseline bankfull elevatior Based on current/developing bankfull feature BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft?) BF Mean Depth (ft) Width of Floodprone Area (ft) BF Max Depth (ft) Width of Floodprone Area (ft) BF Max Depth (ft) Width of Floodprone Area (ft) BF Max Depth (ft) Width of Floodprone Area (ft) BF Max Depth (ft) Width of Floodprone Area (ft) Bank Height Ratio Bank Height Ratio Bank Height Ratio </th <th>- 38.80 - - - - - - - - - - - - -</th> <th>- 43.60 MY1 6.42 0.46 13.87 3.00 0.84 >100 10.50 1.20 7.34 0.41 1201.90 8.35 0.46 13.87 4.00 0.98 >100 8.10 1.10 9.27</th> <th>- 32.90 Cross-section MY2 5.55 0.45 12.28 2.50 0.69 >100 12.10 1.40 6.45 0.39 1201.90 6.43 0.52 12.33 3.30 0.83 >100 10.50 1.10 7.47</th> <th>X-15, Station MY3 5.46 0.37 14.76 2.02 0.69 >100 12.34 1.30 6.20 0.33 1201.91 - - - - - - - - - - - - - - - - - - -</th> <th>n 2+15 (Poo MY4 5.01 0.23 21.78 1.17 0.37 >100 11.39 0.92 5.14 0.23 1201.91 - - - - - - - - - - - -</th> <th>/</th> <th>MY+</th> <th>$\begin{array}{c} 6.60\\ 0.41\\ 15.99\\ 2.70\\ 0.91\\ >100\\ 7.00\\ 1.20\\ 7.42\\ 0.36\\ 1201.21\\ \hline \end{array}$</th> <th>C MY1 5.82 0.37 15.71 2.20 0.77 >100 7.10 1.00 6.56 0.34 1201.21 5.82 0.37 15.71 2.20 0.77 >100 7.10 1.00 6.56 0.34 1201.21</th> <th>MY2 4.68 0.32 14.47 1.50 0.63 >100 8.70 1.20 5.32 0.28 1201.21 5.46 0.38 14.50 2.10 0.74 >100 8.10 1.10 6.22</th> <th>MY3 5.11 0.27 18.93 1.37 0.66 >100 7.97 1.23 5.65 0.24 1201.21 - - - - - - - - - - - - -</th> <th>MY4 5.55 0.31 17.90 1.72 0.80 >100 8.29 0.97 6.15 0.28 1201.21 - - - - - - - - - - - - -</th> <th>,</th> <th>MY+</th> <th>Base</th> <th>MY1</th> <th>MY2</th> <th>MY3</th> <th>MY4</th> <th>MY5</th> <th>MY+</th> <th>Base</th> <th>MY1</th> <th>MY2</th> <th>MY3</th> <th>MY4</th> <th>MY5</th> <th>MY+</th>	- 38.80 - - - - - - - - - - - - -	- 43.60 MY1 6.42 0.46 13.87 3.00 0.84 >100 10.50 1.20 7.34 0.41 1201.90 8.35 0.46 13.87 4.00 0.98 >100 8.10 1.10 9.27	- 32.90 Cross-section MY2 5.55 0.45 12.28 2.50 0.69 >100 12.10 1.40 6.45 0.39 1201.90 6.43 0.52 12.33 3.30 0.83 >100 10.50 1.10 7.47	X-15, Station MY3 5.46 0.37 14.76 2.02 0.69 >100 12.34 1.30 6.20 0.33 1201.91 - - - - - - - - - - - - - - - - - - -	n 2+15 (Poo MY4 5.01 0.23 21.78 1.17 0.37 >100 11.39 0.92 5.14 0.23 1201.91 - - - - - - - - - - - -	/	MY+	$\begin{array}{c} 6.60\\ 0.41\\ 15.99\\ 2.70\\ 0.91\\ >100\\ 7.00\\ 1.20\\ 7.42\\ 0.36\\ 1201.21\\ \hline \end{array}$	C MY1 5.82 0.37 15.71 2.20 0.77 >100 7.10 1.00 6.56 0.34 1201.21 5.82 0.37 15.71 2.20 0.77 >100 7.10 1.00 6.56 0.34 1201.21	MY2 4.68 0.32 14.47 1.50 0.63 >100 8.70 1.20 5.32 0.28 1201.21 5.46 0.38 14.50 2.10 0.74 >100 8.10 1.10 6.22	MY3 5.11 0.27 18.93 1.37 0.66 >100 7.97 1.23 5.65 0.24 1201.21 - - - - - - - - - - - - -	MY4 5.55 0.31 17.90 1.72 0.80 >100 8.29 0.97 6.15 0.28 1201.21 - - - - - - - - - - - - -	,	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+

Note: Per DMS/IRT request, the bank height ratio for MY4 has been calculated using the as-built bankfull area. All other values were calculated using the as-built bankfull elevation, as was done for previous monitoring reports.

Table 11. Morphology and Hydraulic Monitoring Summary

Upper Silver Creek Restoration Project: DMS Project ID No. 94645

UT3 (1,348 LF)																												
			Cross-sectior	n X-8, Statior	(/					n X-9, Station	8+12 (Pool)						X-10, Station	n 8+33 (Riffle)				C	Cross-section	,	n 11+53 (Poo	/	
Dimension and substrate	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Based on fixed baseline bankfull elevation																												
BF Width (ft)	10.05	8.81	9.22	9.28	8.50			10.73	9.50	9.36	10.57	6.54			8.1	6.95	7.19	7.29	7.34			13.03	11.53	11.35	11.35	11.51		
BF Mean Depth (ft)	0.65	0.61	0.51	0.50	0.44			1.02	0.82	0.46	0.50	0.37			0.8	0.68	0.74	0.72	0.66			1.01	0.85	0.61	0.63	0.53		
Width/Depth Ratio	15.46	14.53	18.05	18.56	19.32			10.53	11.64	20.37	21.14	17.68			10.3	10.16	9.70	10.13	11.12			12.80	13.65	18.73	18.02	21.72		
BF Cross-sectional Area (ft ²)	6.50	5.30	4.70	4.61	3.74			10.90	7.80	4.30	5.30	2.40			6.3	4.80	5.31	5.27	4.85			13.22	9.70	6.90	7.12	6.12		
BF Max Depth (ft)	1.13	1.05	1.13	1.10	1.06			1.74	1.59	1.16	1.47	1.14			1.1	0.94	1.08	1.09	1.10			2.17	1.88	1.70	1.65	1.56		
Width of Floodprone Area (ft)	>150	>150	>150	>150	>150			>150	>150	>150	>150	>150			>150	>150	>150	>150	>150			>150	>150	>150	>150	>150		
Entrenchment Ratio	5.40	6.10	5.90	5.83	6.32			5.80	6.60	6.70	5.93	9.59			8.5	9.90	9.60	9.42	9.35			5.60	6.30	6.40	6.43	6.34		
Bank Height Ratio	1.00	1.10	1.00	1.18	0.86			1.00	1.20	1.20	1.24	1.02			1.10	1.20	1.10	1.06	0.99			1.00	1.10	1.10	1.10	0.92		
Wetted Perimeter (ft)	11.35	10.03	10.24	10.28	9.09			12.77	11.14	10.28	11.57	7.73			9.6	8.31	8.67	8.73	7.85			15.05	13.23	12.57	12.61	12.48		
Hydraulic Radius (ft)	0.57	0.53	0.46	0.45	0.41			0.85	0.70	0.42	0.46	0.31			0.7	0.58	0.61	0.60	0.62			0.88	0.73	0.55	0.56	0.49		
Fixed baseline bankfull elevation	1215.38	1215.38	1215.38	1215.38	1215.38			1212.81	1212.81	1212.81	1212.81	1212.81			1212.89	1212.89	1212.89	1212.89	1212.89			1209.27	1209.27	1209.27	1209.27	1209.27		
Based on current/developing bankfull feature																												
BF Width (ft)	10.10	11.68	12.21	-	-		1	10.70	12.10	12.07	- I	-			8.10	7.47	7.99	-	-			13.00	13.02	12.34	-	-		
BF Mean Depth (ft)	0.65	0.53	0.50	-	-			1.02	0.87	0.61	-	-			0.78	0.76	0.81	-	-			1.01	0.92	0.67	-	-		
Width/Depth Ratio	15.46	22.03	24.49	-	-		1	10.53	13.84	19.78	-	-			10.34	9.83	9.89	-	-			12.80	14.21	18.43	-	-		
BF Cross-sectional Area (ft ²)	6.50	6.20	6.10	-	-		1	10.90	10.60	7.40	- 1	-			6.30	5.70	6.40	-	-			13.22	11.21	8.30	-	-		
BF Max Depth (ft)	1.13	1.14	1.26	-	-			1.74	1.86	1.44	-	-			1.09	1.07	1.23	-	-			2.17	2.06	1.82	-	-		
Width of Floodprone Area (ft)	>150	>150	>150	-	-			>150	>150	>150	-	-			>150	>150	>150	-	-			>150	>150	>150	-	-		
Entrenchment Ratio	5.40	4.60	4.40	-	-		1	5.80	5.20	5.20	-	-			8.50	9.20	8.60	-	-			5.60	5.60	5.90	-	-		
Bank Height Ratio	1.00	1.00	1.00	-	-			1.00	1.00	1.00	-	-			1.10	1.10	1.00	-	-			1.00	1.00	1.00	-	-		
Wetted Perimeter (ft)	11.40	12.74	13.21	-	-			12.74	13.84	13.29	-	-			9.66	8.99	9.61	-	-			15.02	14.86	13.68	-	-		
Hydraulic Radius (ft)	0.57	0.49	0.46	-	-			0.86	0.77	0.56	-	-			0.65	0.63	0.67	-	-			0.88	0.80	0.61	-	-		
Cross Sectional Area between end pins (ff)	-	-	-	-	-			-	-	-	-	-			-	-	-	-	-			-	-	-	-	-		
d50 (mm)	31.20	20.40	16.40	0.34	39.84			-	-	-	-	-			-	-	-	-	-			-	-	-	-	-		
			cross-section	,	(/																						
Dimension and substrate	Base	C MY1	Cross-section MY2	X-12, Station MY3	n 11+84 (Rif MY4	fle) MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Dimension and substrate Based on fixed baseline bankfull elevation	Base			,	(/	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Based on fixed baseline bankfull elevation BF Width (ft)	8.17	MY1 7.80	MY2 7.69	MY3 7.62	MY4 7.79	/	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Based on fixed baseline bankfull elevation BF Width (ft) BF Mean Depth (ft)	8.17 0.90	MY1 7.80 0.74	MY2 7.69 0.66	MY3 7.62 0.58	MY4 7.79 0.46	/	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Based on fixed baseline bankfull elevation BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio	8.17 0.90 9.12	MY1 7.80 0.74 10.57	MY2 7.69 0.66 11.72	MY3 7.62 0.58 13.14	MY4 7.79 0.46 16.93	/	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Based on fixed baseline bankfull elevation BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft ²)	8.17 0.90	MY1 7.80 0.74 10.57 5.80	MY2 7.69 0.66 11.72 5.00	MY3 7.62 0.58 13.14 4.40	MY4 7.79 0.46 16.93 3.59	/	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Based on fixed baseline bankfull elevation BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft ²) BF Max Depth (ft)	8.17 0.90 9.12 7.30 1.38	MY1 7.80 0.74 10.57 5.80 1.07	MY2 7.69 0.66 11.72 5.00 0.93	MY3 7.62 0.58 13.14 4.40 0.87	MY4 7.79 0.46 16.93 3.59 0.89	/	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Based on fixed baseline bankfull elevation BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft ²) BF Max Depth (ft) Width of Floodprone Area (ft)	8.17 0.90 9.12 7.30 1.38 >150	MY1 7.80 0.74 10.57 5.80 1.07 >150	MY2 7.69 0.66 11.72 5.00 0.93 >150	MY3 7.62 0.58 13.14 4.40 0.87 >150	MY4 7.79 0.46 16.93 3.59 0.89 >150	/	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Based on fixed baseline bankfull elevation BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft ²) BF Max Depth (ft) Width of Floodprone Area (ft) Entrenchment Ratio	8.17 0.90 9.12 7.30 1.38 >150 9.40	MY1 7.80 0.74 10.57 5.80 1.07 >150 7.00	MY2 7.69 0.66 11.72 5.00 0.93 >150 7.30	MY3 7.62 0.58 13.14 4.40 0.87 >150 6.94	MY4 7.79 0.46 16.93 3.59 0.89 >150 6.83	/	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Based on fixed baseline bankfull elevation BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft ²) BF Max Depth (ft) Width of Floodprone Area (ft) Entrenchment Ratio Bank Height Ratio	8.17 0.90 9.12 7.30 1.38 >150 9.40 1.20	MY1 7.80 0.74 10.57 5.80 1.07 >150 7.00 1.30	MY2 7.69 0.66 11.72 5.00 0.93 >150 7.30 1.30	MY3 7.62 0.58 13.14 4.40 0.87 >150 6.94 1.17	MY4 7.79 0.46 16.93 3.59 0.89 >150 6.83 0.95	/	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Based on fixed baseline bankfull elevation BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft ²) BF Max Depth (ft) Width of Floodprone Area (ft) Entrenchment Ratio Bank Height Ratio Wetted Perimeter (ft)	8.17 0.90 9.12 7.30 1.38 >150 9.40 1.20 9.97	MY1 7.80 0.74 10.57 5.80 1.07 >150 7.00 1.30 9.28	MY2 7.69 0.66 11.72 5.00 0.93 >150 7.30 1.30 9.01	MY3 7.62 0.58 13.14 4.40 0.87 >150 6.94 1.17 8.78	MY4 7.79 0.46 16.93 3.59 0.89 >150 6.83 0.95 8.41	/	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Based on fixed baseline bankfull elevation BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft ²) BF Max Depth (ft) Width of Floodprone Area (ft) Entrenchment Ratio Bank Height Ratio Wetted Perimeter (ft) Hydraulic Radius (ft)	8.17 0.90 9.12 7.30 1.38 >150 9.40 1.20 9.97 0.73	MY1 7.80 0.74 10.57 5.80 1.07 >150 7.00 1.30 9.28 0.63	MY2 7.69 0.66 11.72 5.00 0.93 >150 7.30 1.30 9.01 0.55	MY3 7.62 0.58 13.14 4.40 0.87 >150 6.94 1.17 8.78 0.50	MY4 7.79 0.46 16.93 3.59 0.89 >150 6.83 0.95 8.41 0.43	/	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Based on fixed baseline bankfull elevation BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft ²) BF Max Depth (ft) Width of Floodprone Area (ft) Entrenchment Ratio Bank Height Ratio Wetted Perimeter (ft)	8.17 0.90 9.12 7.30 1.38 >150 9.40 1.20 9.97	MY1 7.80 0.74 10.57 5.80 1.07 >150 7.00 1.30 9.28 0.63	MY2 7.69 0.66 11.72 5.00 0.93 >150 7.30 1.30 9.01 0.55	MY3 7.62 0.58 13.14 4.40 0.87 >150 6.94 1.17 8.78 0.50	MY4 7.79 0.46 16.93 3.59 0.89 >150 6.83 0.95 8.41 0.43	/	MY+	Base Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Based on fixed baseline bankfull elevation BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft ²) BF Max Depth (ft) Width of Floodprone Area (ft) Entrenchment Ratio Bank Height Ratio Wetted Perimeter (ft) Hydraulic Radius (ft)	8.17 0.90 9.12 7.30 1.38 >150 9.40 1.20 9.97 0.73	MY1 7.80 0.74 10.57 5.80 1.07 >150 7.00 1.30 9.28 0.63	MY2 7.69 0.66 11.72 5.00 0.93 >150 7.30 1.30 9.01 0.55	MY3 7.62 0.58 13.14 4.40 0.87 >150 6.94 1.17 8.78 0.50	MY4 7.79 0.46 16.93 3.59 0.89 >150 6.83 0.95 8.41 0.43	/	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Based on fixed baseline bankfull elevation BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft²) BF Max Depth (ft) Width of Floodprone Area (ft²) Entrenchment Ratio Bank Height Ratio Wetted Perimeter (ft) Hydraulic Radius (ft) Fixed baseline bankfull elevatior Based on current/developing bankfull feature	8.17 0.90 9.12 7.30 1.38 >150 9.40 1.20 9.97 0.73 1208.77	MY1 7.80 0.74 10.57 5.80 1.07 >150 7.00 1.30 9.28 0.63 1208.77	MY2 7.69 0.66 11.72 5.00 0.93 >150 7.30 1.30 1.30 9.01 0.55 1208.77	MY3 7.62 0.58 13.14 4.40 0.87 >150 6.94 1.17 8.78 0.50	MY4 7.79 0.46 16.93 3.59 0.89 >150 6.83 0.95 8.41 0.43	/	MY+	Base Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Based on fixed baseline bankfull elevation BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft ²) BF Max Depth (ft) Width of Floodprone Area (ft) Entrenchment Ratio Bank Height Ratio Wetted Perimeter (ft) Hydraulic Radius (ft) Fixed baseline bankfull elevation	8.17 0.90 9.12 7.30 1.38 >150 9.40 1.20 9.97 0.73	MY1 7.80 0.74 10.57 5.80 1.07 >150 7.00 1.30 9.28 0.63	MY2 7.69 0.66 11.72 5.00 0.93 >150 7.30 1.30 9.01 0.55 1208.77	MY3 7.62 0.58 13.14 4.40 0.87 >150 6.94 1.17 8.78 0.50 1208.77	MY4 7.79 0.46 16.93 3.59 0.89 >150 6.83 0.95 8.41 0.43	/	MY+	Base Base Base Base Base Base Base Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Based on fixed baseline bankfull elevation BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft²) BF Max Depth (ft) Width of Floodprone Area (ft) Entrenchment Ratio Bank Height Ratio Wetted Perimeter (ft) Hydraulic Radius (ft) Fixed baseline bankfull elevatior Based on current/developing bankfull feature BF Width (ft) BF Max Depth (ft)	8.17 0.90 9.12 7.30 1.38 >150 9.40 1.20 9.97 0.73 1208.77 8.20	MY1 7.80 0.74 10.57 5.80 1.07 >150 7.00 1.30 9.28 0.63 1208.77 9.13 0.87	MY2 7.69 0.66 11.72 5.00 0.93 >150 7.30 1.30 9.01 0.55 1208.77 9.15 0.82	MY3 7.62 0.58 13.14 4.40 0.87 >150 6.94 1.17 8.78 0.50 1208.77	MY4 7.79 0.46 16.93 3.59 0.89 >150 6.83 0.95 8.41 0.43	/	MY+	Base Base Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Based on fixed baseline bankfull elevation BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft²) BF Max Depth (ft) Width of Floodprone Area (ft²) Entrenchment Ratio Bank Height Ratio Wetted Perimeter (ft) Fixed baseline bankfull elevatior Based on current/developing bankfull feature BF Width (ft) BF Mean Depth (ft)	8.17 0.90 9.12 7.30 1.38 >150 9.40 1.20 9.97 0.73 1208.77 8.20 0.90	MY1 7.80 0.74 10.57 5.80 1.07 >150 7.00 1.30 9.28 0.63 1208.77 9.13	MY2 7.69 0.66 11.72 5.00 0.93 >150 7.30 1.30 9.01 0.55 1208.77	MY3 7.62 0.58 13.14 4.40 0.87 >150 6.94 1.17 8.78 0.50 1208.77	MY4 7.79 0.46 16.93 3.59 0.89 >150 6.83 0.95 8.41 0.43	/	MY+	Base Base Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Based on fixed baseline bankfull elevation BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft²) BF Max Depth (ft) Width of Floodprone Area (ft²) Entrenchment Ratio Bank Height Ratio Wetted Perimeter (ft) Fixed baseline bankfull elevatior Based on current/developing bankfull feature BF Width (ft) BF Mean Depth (ft) BF Mean Depth Ratio BF Cross-sectional Area (ft²	8.17 0.90 9.12 7.30 1.38 >150 9.40 1.20 9.97 0.73 1208.77 8.20 0.90 9.12 7.30	MY1 7.80 0.74 10.57 5.80 1.07 >150 7.00 1.30 9.28 0.63 1208.77 9.13 0.87 10.45 8.00	MY2 7.69 0.66 11.72 5.00 0.93 >150 7.30 1.30 9.01 0.55 1208.77 9.15 0.82 11.11 7.50	MY3 7.62 0.58 13.14 4.40 0.87 >150 6.94 1.17 8.78 0.50 1208.77	MY4 7.79 0.46 16.93 3.59 0.89 >150 6.83 0.95 8.41 0.43	/	MY+	Base Base Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Based on fixed baseline bankfull elevation BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft²) BF Max Depth (ft) Width of Floodprone Area (ft²) Entrenchment Ratio Bank Height Ratio Wetted Perimeter (ft) Fixed baseline bankfull elevatior Based on current/developing bankfull feature BF Mean Depth (ft) BF Cross-sectional Area (ft²) BF Max Depth (ft)	8.17 0.90 9.12 7.30 1.38 >150 9.40 1.20 9.97 0.73 1208.77 8.20 0.90 9.12 7.30 1.38	MY1 7.80 0.74 10.57 5.80 1.07 >150 7.00 1.30 9.28 0.63 1208.77 9.13 0.87 10.45 8.00 1.34	MY2 7.69 0.66 11.72 5.00 0.93 >150 7.30 1.30 9.01 0.55 1208.77 9.15 0.82 11.11 7.50 1.23	MY3 7.62 0.58 13.14 4.40 0.87 >150 6.94 1.17 8.78 0.50 1208.77	MY4 7.79 0.46 16.93 3.59 0.89 >150 6.83 0.95 8.41 0.43	/	MY+	Base Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Based on fixed baseline bankfull elevation BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft²) BF Max Depth (ft) Width of Floodprone Area (ft) Entrenchment Ratio Bank Height Ratio Wetted Perimeter (ft) Hydraulic Radius (ft) Fixed baseline bankfull elevatior Based on current/developing bankfull feature BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft²) BF Case-sectional Area (ft²) BF Cross-sectional Area (ft²) BF Max Depth (ft) Width of Floodprone Area (ft²)	8.17 0.90 9.12 7.30 1.38 >150 9.40 1.20 9.97 0.73 1208.77 8.20 0.90 9.12 7.30	MY1 7.80 0.74 10.57 5.80 1.07 >150 7.00 1.30 9.28 0.63 1208.77 9.13 0.87 10.45 8.00 1.34 >150	MY2 7.69 0.66 11.72 5.00 0.93 >150 7.30 1.30 9.01 0.55 1208.77 9.15 0.82 11.11 7.50 1.23 >150	MY3 7.62 0.58 13.14 4.40 0.87 >150 6.94 1.17 8.78 0.50 1208.77	MY4 7.79 0.46 16.93 3.59 0.89 >150 6.83 0.95 8.41 0.43	/	MY+	Base Base Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Based on fixed baseline bankfull elevation BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft²) BF Max Depth (ft) Width of Floodprone Area (ft) Entrenchment Ratio Bank Height Ratio Wetted Perimeter (ft) Hydraulic Radius (ft) Fixed baseline bankfull elevatior Based on current/developing bankfull feature BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft²) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft²) BF Max Depth (ft) Width of Floodprone Area (ft) BF Max Depth (ft)	$\begin{array}{r} 8.17 \\ 0.90 \\ 9.12 \\ 7.30 \\ 1.38 \\ >150 \\ 9.40 \\ 1.20 \\ 9.97 \\ 0.73 \\ 1208.77 \\ \hline \\ 8.20 \\ 0.90 \\ 9.12 \\ 7.30 \\ 1.38 \\ >150 \\ 9.40 \\ \end{array}$	MY1 7.80 0.74 10.57 5.80 1.07 >150 7.00 1.30 9.28 0.63 1208.77 9.13 0.87 10.45 8.00 1.34	MY2 7.69 0.66 11.72 5.00 0.93 >150 7.30 1.30 9.01 0.55 1208.77 9.15 0.82 11.11 7.50 1.23	MY3 7.62 0.58 13.14 4.40 0.87 >150 6.94 1.17 8.78 0.50 1208.77 - - - - -	MY4 7.79 0.46 16.93 3.59 0.89 >150 6.83 0.95 8.41 0.43	/	MY+	Base Base Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Based on fixed baseline bankfull elevation BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft²) BF Max Depth (ft) Width of Floodprone Area (ft) Entrenchment Ratio Bank Height Ratio Wetted Perimeter (ft) Hydraulic Radius (ft) Fixed baseline bankfull elevatior Based on current/developing bankfull feature BF Width (ft) BF Max Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft²) BF Max Depth (ft) Width of Floodprone Area (ft) BF Max Depth (ft) Width of Floodprone Area (ft) Entrenchment Ratio Bank Height Ratio	8.17 0.90 9.12 7.30 1.38 >150 9.40 1.20 9.97 0.73 1208.77 8.20 0.90 9.12 7.30 1.38 >150 9.40 1.20	MY1 7.80 0.74 10.57 5.80 1.07 >150 7.00 1.30 9.28 0.63 1208.77 9.13 0.87 10.45 8.00 1.34 >150 8.50 1.00	MY2 7.69 0.66 11.72 5.00 0.93 >150 7.30 1.30 9.01 0.55 1208.77 9.15 0.82 11.11 7.50 1.23 >150 8.50 1.00	MY3 7.62 0.58 13.14 4.40 0.87 >150 6.94 1.17 8.78 0.50 1208.77	MY4 7.79 0.46 16.93 3.59 0.89 >150 6.83 0.95 8.41 0.43	/	MY+	Base Base Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Based on fixed baseline bankfull elevation BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft²) BF Max Depth (ft) Width of Floodprone Area (ft) Entrenchment Ratio Bank Height Ratio Wetted Perimeter (ft) Hydraulic Radius (ft) Fixed baseline bankfull elevatior Based on current/developing bankfull feature BF Width (ft) BF Cross-sectional Area (ft²) BF Cross-sectional Area (ft²) BF Max Depth (ft) Width of Floodprone Area (ft²) BF Max Depth (ft) Width of Floodprone Area (ft²) BF Max Depth (ft) Width of Floodprone Area (ft²) BF Max Depth (ft) Width of Floodprone Area (ft²) BAF Max Depth (ft) Width of Floodprone Area (ft²) Bank Height Ratio Bank Height Ratio	8.17 0.90 9.12 7.30 1.38 >150 9.40 1.20 9.97 0.73 1208.77 8.20 0.90 9.12 7.30 1.38 >150 9.40 1.20 9.40 1.20 9.40 1.20 9.40 1.20 9.40 1.20 9.40 1.20 9.97 0.73 1.20 9.40 1.20 9.97 0.73 1.20 9.97 0.73 1.20 9.97 0.73 1.20 9.97 0.73 1.20 9.97 0.73 1.20 9.97 0.73 1.20 9.97 0.73 1.20 9.97 0.73 1.20 9.97 0.73 1.20 9.97 0.73 1.20 9.97 0.73 1.20 9.90 9.12 7.30 1.20 9.97 0.73 1.20 9.90 9.12 7.30 1.20 9.12 7.30 9.12 7.30 1.20 9.12 7.30 1.20 9.12 7.30 1.20 9.12 7.30 1.20 9.12 7.30 1.20 9.12 7.30 1.28 9.12 7.30 1.28 9.40 1.20 9.12 7.30 1.28 9.40 1.20 9.12 7.30 1.20 9.40 1.2	MY1 7.80 0.74 10.57 5.80 1.07 >150 7.00 1.30 9.28 0.63 1208.77 9.13 0.87 10.45 8.00 1.34 >150 8.50 1.00 10.87	MY2 7.69 0.66 11.72 5.00 0.93 >150 7.30 1.30 9.01 0.55 1208.77 9.15 0.82 11.11 7.50 1.23 >150 8.50 1.00 1.00 10.79	MY3 7.62 0.58 13.14 4.40 0.87 >150 6.94 1.17 8.78 0.50 1208.77 - - - - - - - - - -	MY4 7.79 0.46 16.93 3.59 0.89 >150 6.83 0.95 8.41 0.43	/	MY+	Base Base Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Based on fixed baseline bankfull elevation BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft²) BF Max Depth (ft) Width of Floodprone Area (ft) Entrenchment Ratio Bank Height Ratio Wetted Perimeter (ft) Hydraulic Radius (ft) Fixed baseline bankfull elevatior Based on current/developing bankfull feature BF Width (ft) BF Cross-sectional Area (ft²) BF Max Depth (ft) Width of Floodprone Area (ft²) BF Mean Depth (ft) Width of Floodprone Area (ft²) BF Max Depth (ft) Width of Floodprone Area (ft²) BF Max Depth (ft) Width of Floodprone Area (ft²) Bank Height Ratio Bank Height Ratio Bank Height Ratio	8.17 0.90 9.12 7.30 1.38 >150 9.40 1.20 9.97 0.73 1208.77 8.20 0.90 9.12 7.30 1.38 >150 9.40 1.20	MY1 7.80 0.74 10.57 5.80 1.07 >150 7.00 1.30 9.28 0.63 1208.77 9.13 0.87 10.45 8.00 1.34 >150 8.50 1.00 10.87 0.74	MY2 7.69 0.66 11.72 5.00 0.93 >150 7.30 1.30 9.01 0.55 1208.77 9.15 0.82 11.11 7.50 1.23 >150 8.50 1.00	MY3 7.62 0.58 13.14 4.40 0.87 >150 6.94 1.17 8.78 0.50 1208.77	MY4 7.79 0.46 16.93 3.59 0.89 >150 6.83 0.95 8.41 0.43	/	MY+	Base Base Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Based on fixed baseline bankfull elevation BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft²) BF Max Depth (ft) Width of Floodprone Area (ft) Entrenchment Ratio Bank Height Ratio Wetted Perimeter (ft) Hydraulic Radius (ft) Fixed baseline bankfull elevatior Based on current/developing bankfull feature BF Width (ft) BF Mean Depth (ft) Width of Floodprone Area (ft²) BF Mean Depth (ft) Width of Floodprone Area (ft²) BF Max Depth (ft) Width of Floodprone Area (ft²) BF Max Depth (ft) Width of Floodprone Area (ft²) BF Max Depth (ft) Width of Floodprone Area (ft²) BAF Max Depth (ft) Entrenchment Ratio Bank Height Ratio Bank Height Ratio	8.17 0.90 9.12 7.30 1.38 >150 9.40 1.20 9.97 0.73 1208.77 8.20 0.90 9.12 7.30 1.38 >150 9.40 1.20 9.40 1.20 9.40 1.20 9.40 1.20 9.40 1.20 9.40 1.20 9.97 0.73 1.20 9.40 1.20 9.97 0.73 1.20 9.97 0.73 1.20 9.97 0.73 1.20 9.97 0.73 1.20 9.97 0.73 1.20 9.97 0.73 1.20 9.97 0.73 1.20 9.97 0.73 1.20 9.97 0.73 1.20 9.97 0.73 1.20 9.97 0.73 1.20 9.90 9.12 7.30 1.20 9.97 0.73 1.20 9.90 9.12 7.30 1.20 9.12 7.30 9.12 7.30 1.20 9.12 7.30 1.20 9.12 7.30 1.20 9.12 7.30 1.20 9.12 7.30 1.20 9.12 7.30 1.28 9.12 7.30 1.28 9.40 1.20 9.12 7.30 1.28 9.40 1.20 9.12 7.30 1.20 9.40 1.2	MY1 7.80 0.74 10.57 5.80 1.07 >150 7.00 1.30 9.28 0.63 1208.77 9.13 0.87 10.45 8.00 1.34 >150 8.50 1.00 10.87	MY2 7.69 0.66 11.72 5.00 0.93 >150 7.30 1.30 9.01 0.55 1208.77 9.15 0.82 11.11 7.50 1.23 >150 8.50 1.00 1.00 10.79	MY3 7.62 0.58 13.14 4.40 0.87 >150 6.94 1.17 8.78 0.50 1208.77	MY4 7.79 0.46 16.93 3.59 0.89 >150 6.83 0.95 8.41 0.43	/	MY+	Base Base Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+


Note: Per DMS/IRT request, the bank height ratio for MY4 has been calculated using the as-built bankfull area. All other values were calculated using the as-built bankfull elevation, as was done for previous monitoring reports.

Appendix E Wetland Assessment Data

Includes:

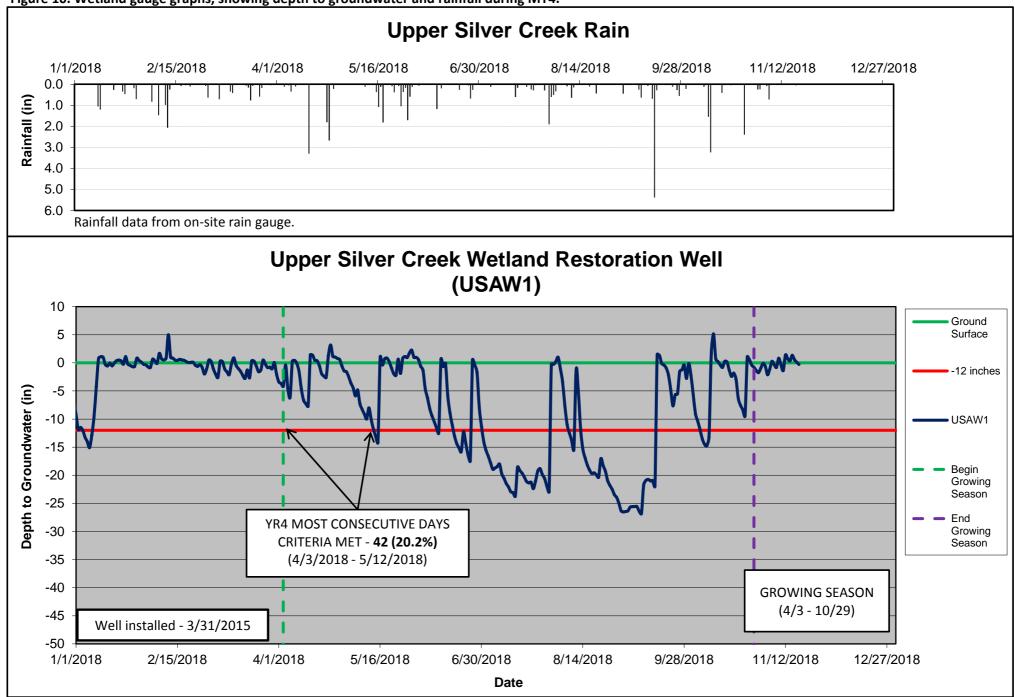
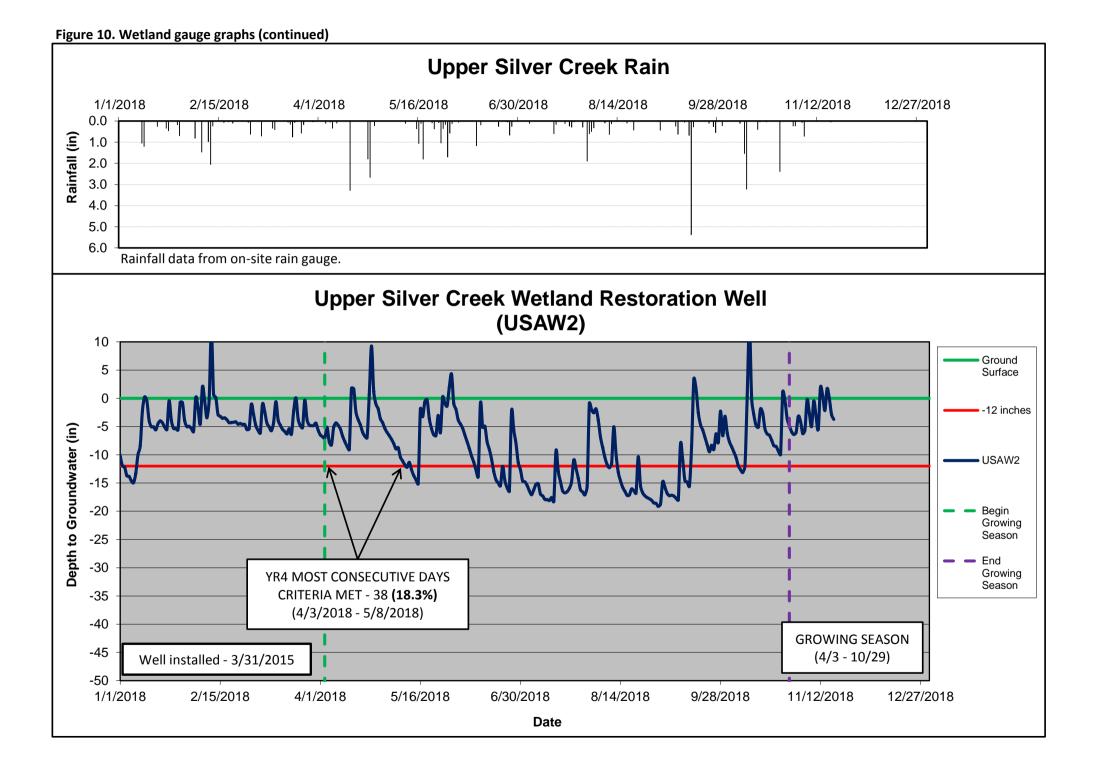
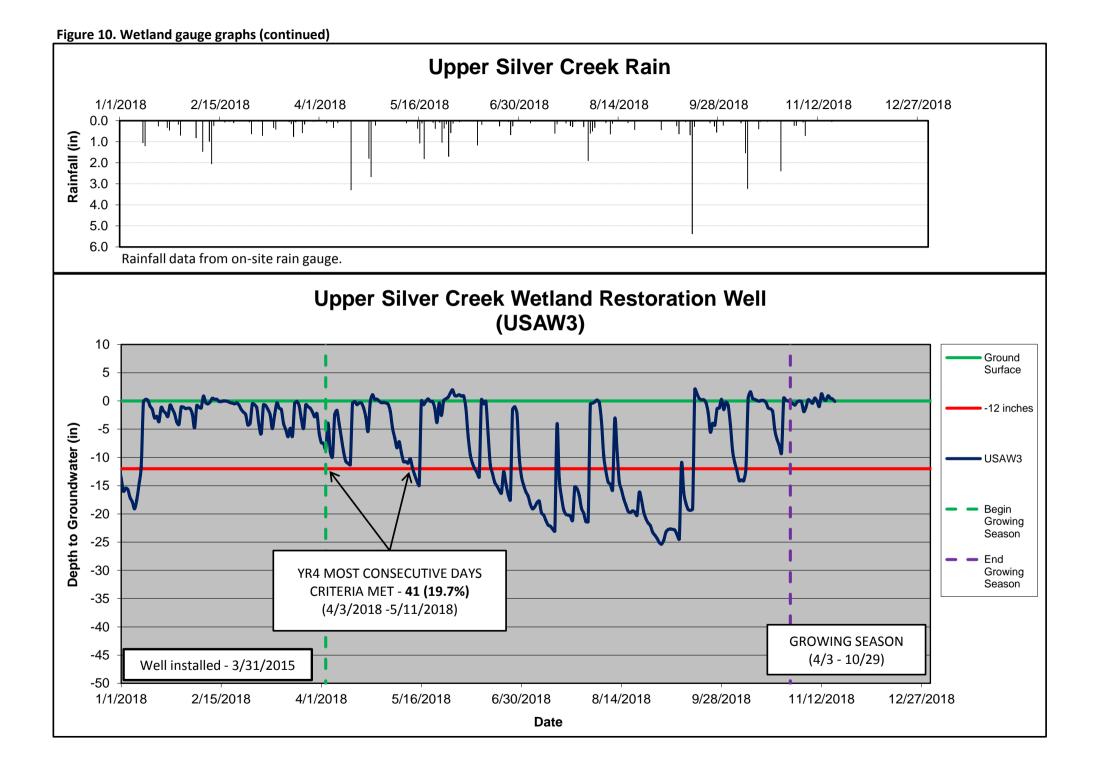
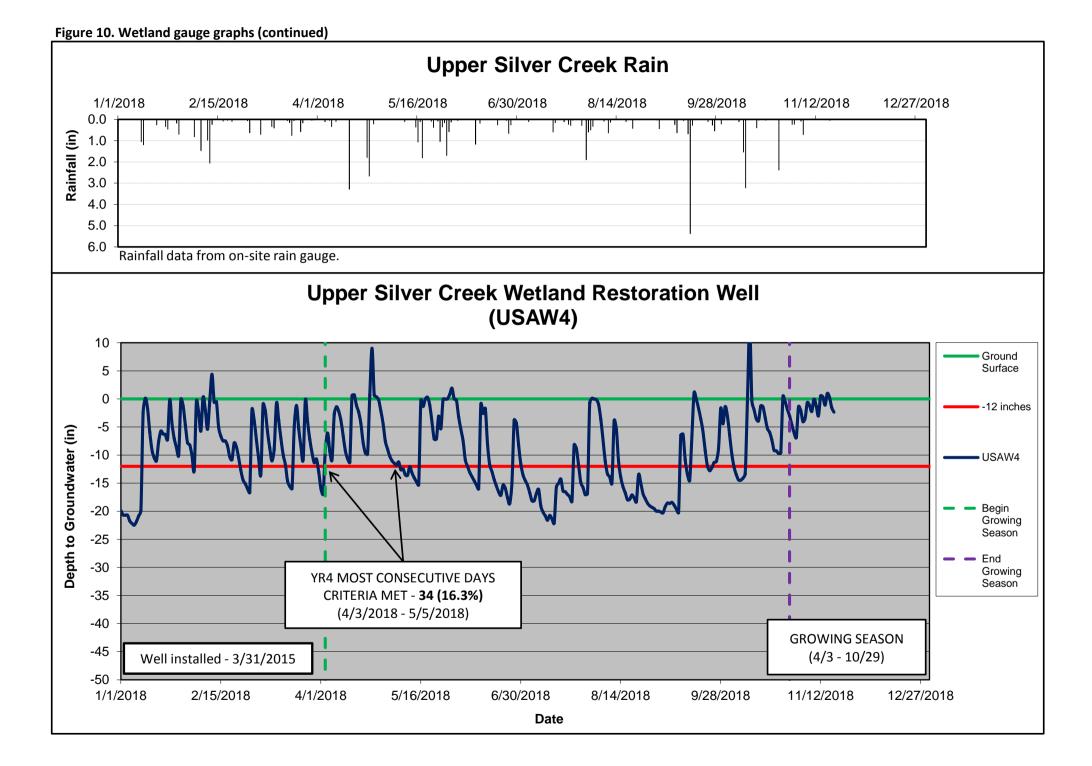
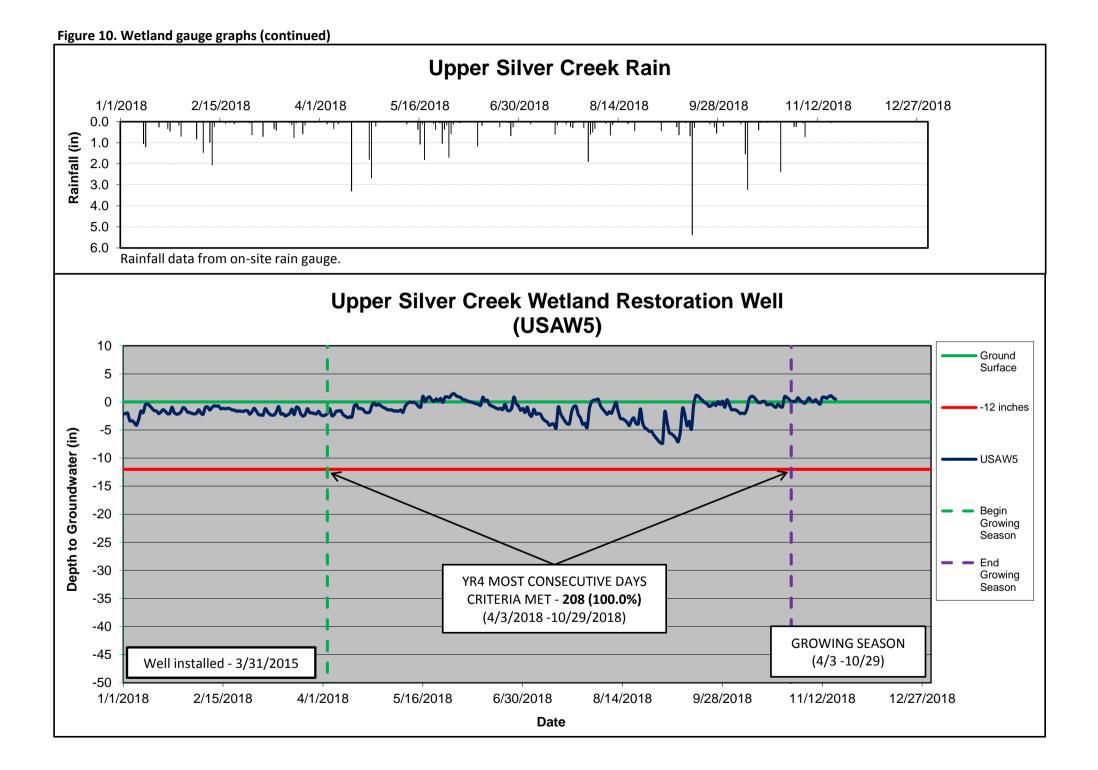
- Figure 9. Observed Rainfall vs Historical Average
- Figure 10. Wetland Gauge Graphs
- Table 12.Wetland Gauge Attainment data
- Table 12a. Wetland Restoration Area Well Success
- Figure 11. Wetland Photo Log

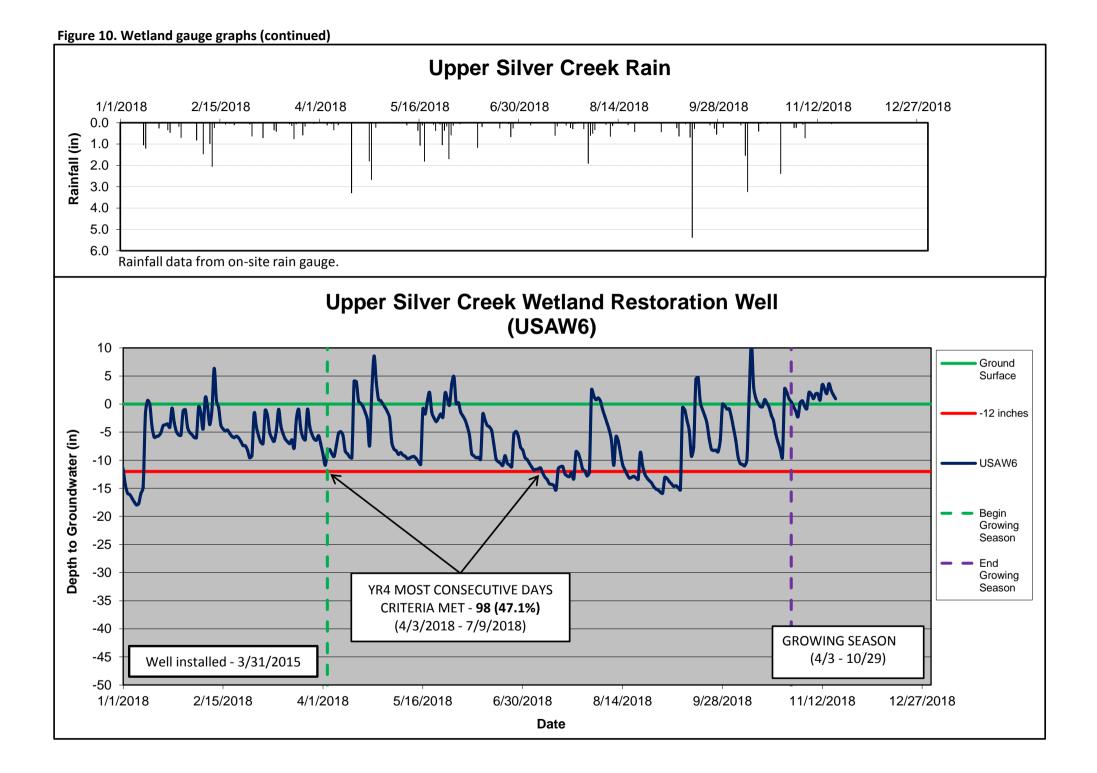
Figure 9. Observed Rainfall vs. Historical Average

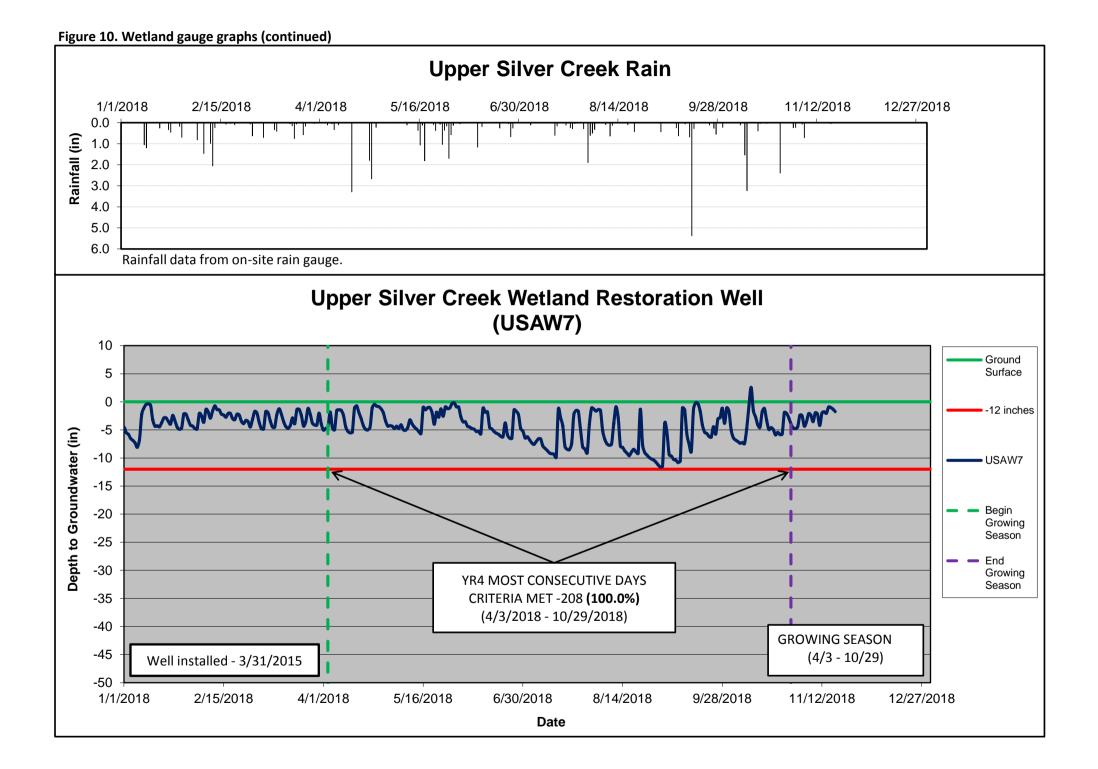
Note: Rainfall data from Marion (NGRF) and Morganton (KMRN) was incomplete for some months and only data that was available is presented.

Historic rainfall data from Burke County Soil Survey, NRCS, pg. 420

Rainfall data source for Upper Silver Rain Gauge: Onsite HOBO tipping bucket rain gauge with Pendant Data Logger Rainfall data source for Rutherfordton, NC: http://climate.ncsu.edu/cronos?station=KFQD&temporal=hourly Rainfall data source for Spindale, NC: http://climate.ncsu.edu/cronos?station=SPIN&temporal=hourly Rainfall data source for Morganton, NC: http://climate.ncsu.edu/cronos?station=KMRN&temporal=hourly Rainfall data source for historic averages: Morganton, NC WETS Table (1971-2016)


Figure 10. Wetland gauge graphs, showing depth to groundwater and rainfall during MY4.



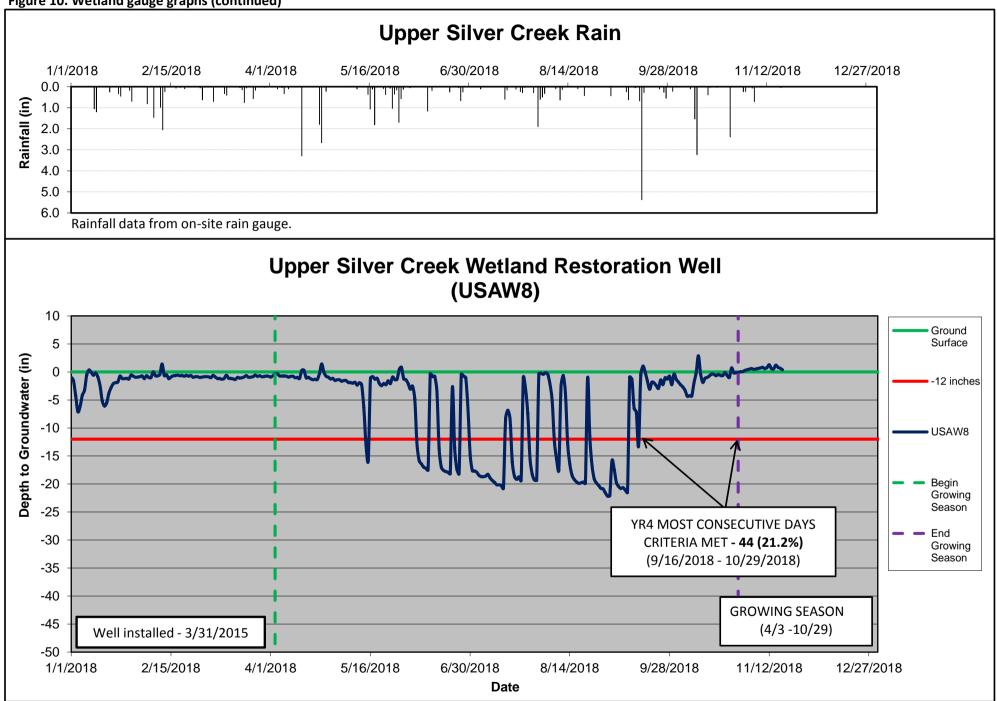
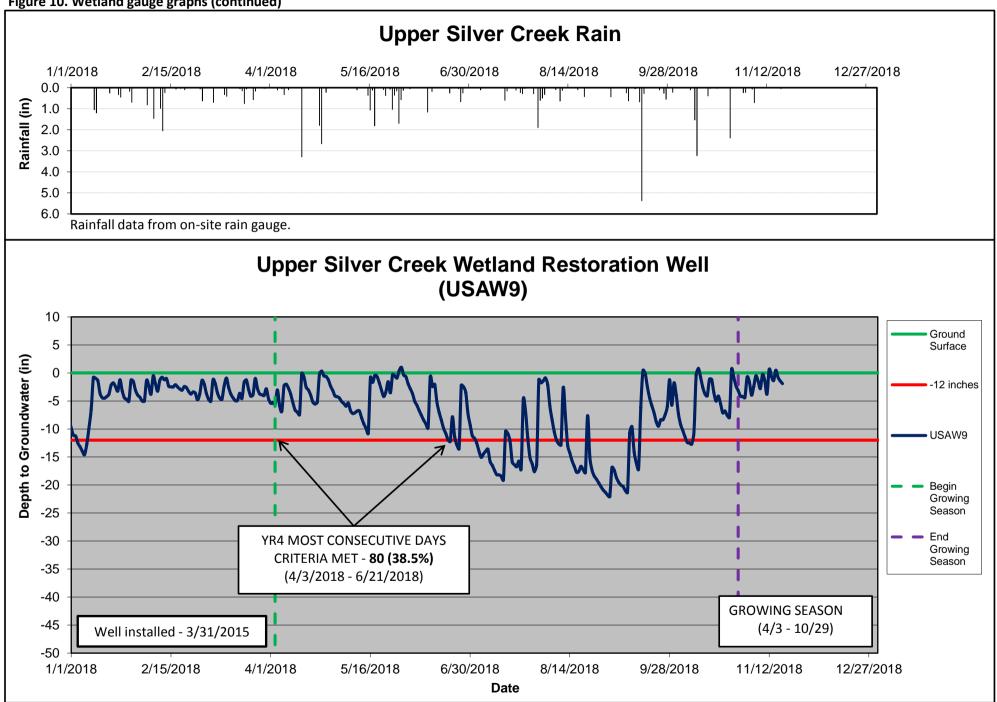
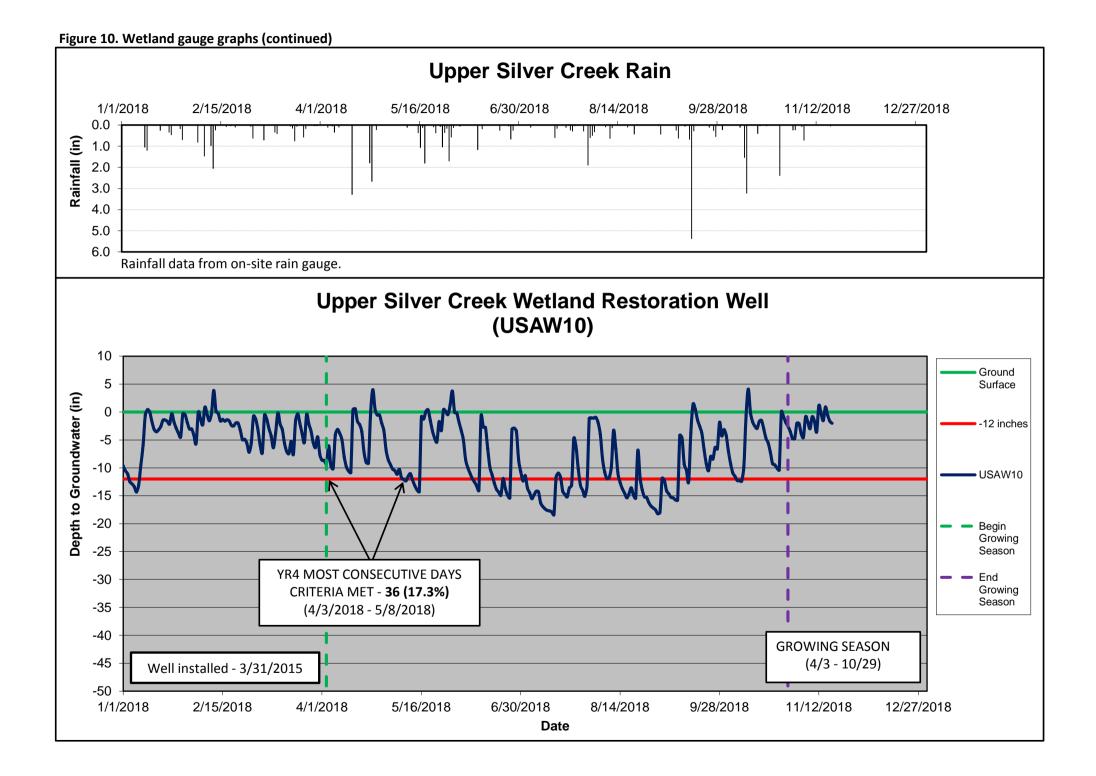
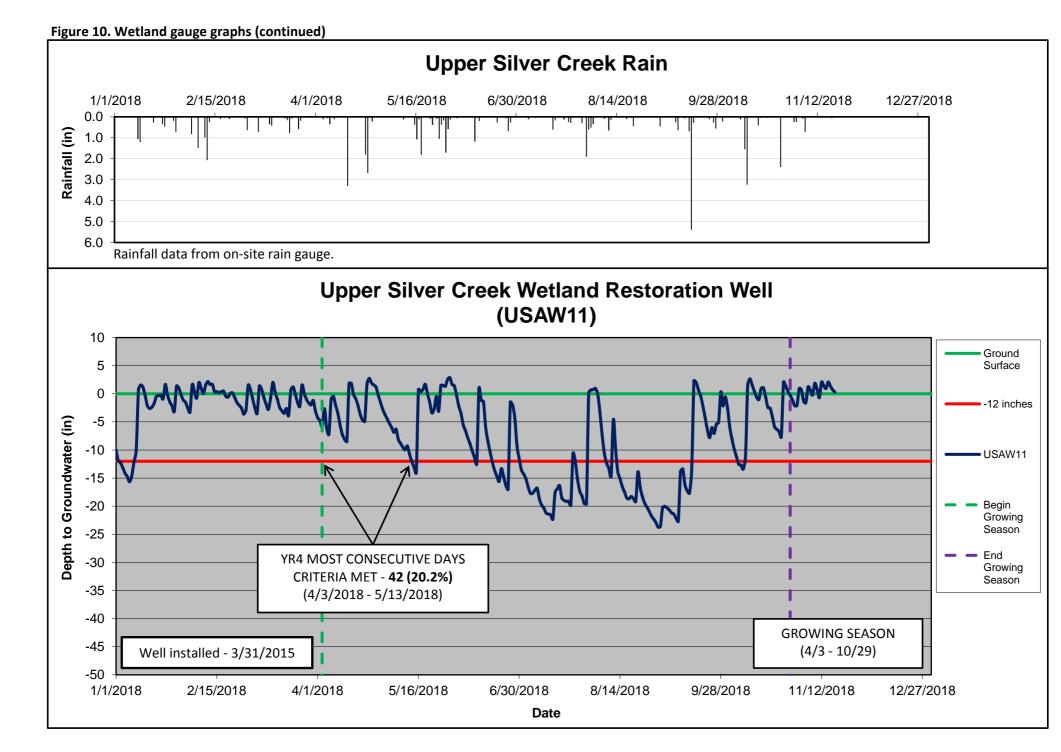
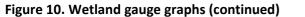
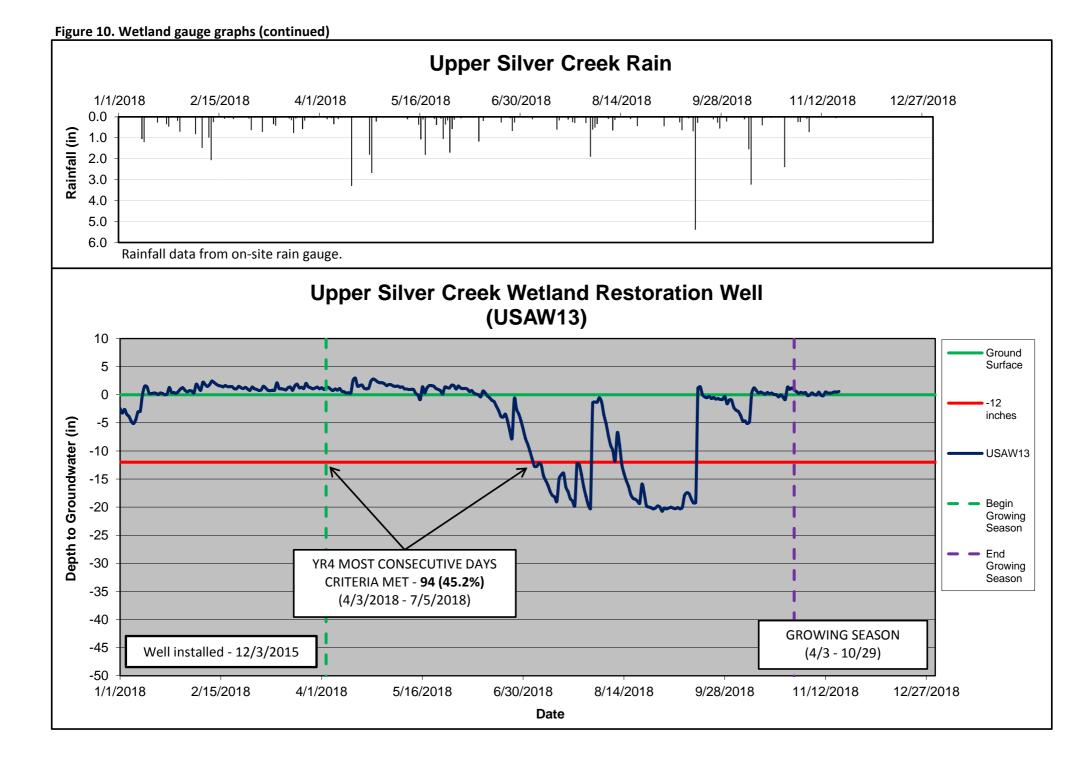
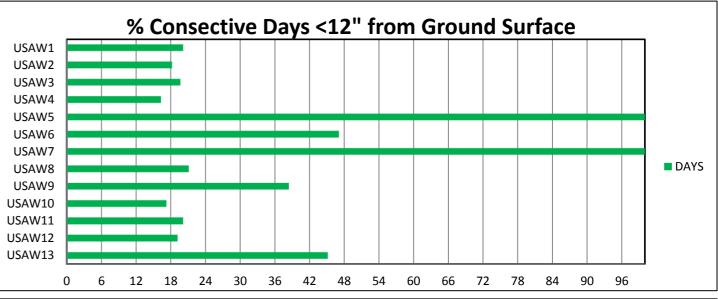
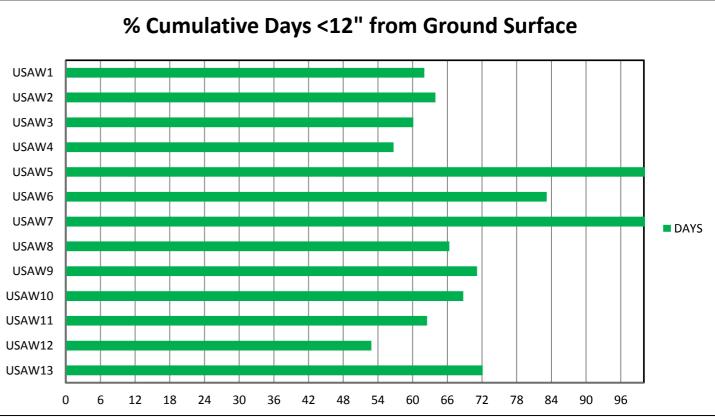


Figure 10. Wetland gauge graphs (continued)



Figure 10. Wetland gauge graphs (continued)





MY 1 thro	0 0	Silver Creek Pr	• •	0	0
	Success Criteria	Achieved/Max	Consecutive Day (Percentage)	s During Growir	ng Season
Gauge	Monitoring	Monitoring			
	Monitoring Year 1 (2015)	Monitoring Year 2 (2016)	Monitoring Year 3 (2017)	Monitoring Year 4 (2018)	Monitoring Year 5 (2019)
USAW1	Yes/36.5 days (17.5 %)	No/9.5 days (4.6%)	Yes/44 days (21.2%)	Yes/42 days (20.2%)	10015 (2025)
USAW2	No/21.8 days (10.5 %)	No/12.3 days (5.9%)	Yes/71 days (34.1%)	Yes/38 days (18.3%)	
USAW3	No/20.3 days (9.7 %)	No/7 days (3.4%)	No/21 days (10.1%)	Yes/41 days (19.7%)	
USAW4	No/5.5 days (2.6 %)	No/5 days (2.4%)	No/11 days (5.3%)	Yes/34 days (16.3%)	
USAW5	Yes/80.5 days (38.7 %)	Yes/77.5 days (37.3 %)	Yes/119 days (57.2%)	Yes/208 days (100.0%)	
USAW6	No/19.5 days (9.4 %)	No/7 days (3.4 %)	No/16 days (7.7 %)	Yes/98 days (47.1%)	
USAW7	Yes/74.5 days (35.8 %)	Yes/72.5 days (34.9 %)	Yes/110 days (52.9%)	Yes/208 days (100.0%)	
USAW8	No/2.5 days (1.2 %)	No/5.8 days (2.8 %)	Yes/46 days (22.1%)	Yes/44 days (21.2%)	
USAW9	Yes/35.5 days (17.1 %)	No/13.5 days (6.5 %)	Yes/44 days (21.2%)	Yes/80 days (38.5%)	
USAW10	No/19.8 days (9.5 %)	No/9.8 days (4.7 %)	Yes/44 days (21.2%)	Yes/36 days (17.3%)	
USAW11	No/18.5 days (8.9 %)	No/11.5 days (5.5 %)	Yes/44 days (21.2%)	Yes/42 days (20.2%)	
USAW12	No/17.5 days (8.4 %)	No/7.3 days (3.5 %)	No/20 days (9.6%)	Yes/40 days (19.2%)	
USAW13		Yes/55.5 days (26.7 %)	Yes/87 days (41.8%)	Yes/94 days (45.2%)	

Table 12. Wetland gauge attainment data, summary of groundwater gauge results forMY 1 through 5 at the U. Silver Creek Project Site, DMS Project #94645.

Well ID ⁵	*Percentage of Consecutive Days <12 inches from Ground Surface ¹	Most Consecutive Days Meeting Criteria ²	*Percentage of Cumulative Days <12 inches from Ground Surface ¹	Cumulative Days Meeting Criteria ³	Number of Instances where Water Table is 12 inches from Ground Surface ⁴
		Cross-se	ectional Well Arrays	•	
USAW1	20.2	42.0	62.0	129.0	8
USAW2	18.3	38.0	63.9	133.0	13
USAW3	19.7	41.0	60.1	125.0	10
USAW4	16.3	34.0	56.7	118.0	11
USAW5	100.0	208.0	101.0	210.0	1
USAW6	47.1	98.0	83.2	173.0	6
USAW7	100.0	208.0	101.0	210.0	1
USAW8	21.2	44.0	66.3	138.0	12
USAW9	38.5	80.0	71.2	148.0	11
USAW10	17.3	36.0	68.8	143.0	15
USAW11	20.2	42.0	62.5	130.0	9
USAW12	19.2	40.0	52.9	110.0	5
USAW13	45.2	94.0	72.1	150.0	3
bil surface. Indicates the curface. Indicates the rurface.	umulative number of da	ys within the monitor in the monitored grow	red growing season with a	a water table 12 inch	2 inches or less from the es or less from the soil nches or less from the soil
browing seaso	n for Burke County is fr	om April 3 to Octobe	r 29 and is 208 days long	Ţ.	
Browing seaso	n percentage for success	is 12% of 208 days =	= 25 days; where water ta	ble is 12 inches or le	ess from the ground surface
nonitored grow nirteen wells d nroughout mo	ving season with a water lid not exhibit a hyrdrop nitoring Year 3.	12 inches or less from eriod of 12% or great	cess criteria for the most of m the soil surface. Follo er during the growing sea	wing Year 3 of weth ason. These wells w	and monitoring, ten of ill be observed closely

Figure 11. U. Silver Creek Wetland Photo Log, MY4 (2018)

Photo 1. Wetland Photo Point – W1, replicates photo 50 in Baseline Report (November 18, 2018).

Photo 3. Wetland Photo Point – W3 replicates photo 52 in Baseline Report (November 18, 2018).

Photo 2. Wetland Photo Point – W2, replicates photo 51 in Baseline Report (November 18, 2018).

Photo 4. Wetland Photo Point – W4, replicates photo 53 in Baseline Report (November 18, 2018).

Photo 5. Wetland Photo Point – W5, replicates photo 54 in Baseline Report (November 18, 2018).

Photo 6. Wetland Photo Point – W6, replicates photo 55 in Baseline Report (November 18, 2018).

Photo 7. Wetland Photo Point – W7, replicates photo 56 in Baseline Report (November 18, 2018).

Photo 8. Wetland Photo Point – W8, replicates photo 57 in Baseline Report (November 18, 2018).

Photo 9. Wetland Photo Point – W9, replicates photo 58 in Baseline Report (November 18, 2018).

Photo 11. Wetland Photo Point – W11, replicates photo 60 in Baseline Report (November 18, 2018).

Photo 10. Wetland Photo Point – W10, replicates photo 59 in Baseline Report (November 18, 2018).

Photo 12. Wetland Photo Point – W12, replicates photo 61 in Baseline Report (November 18, 2018).

Photo 13. Wetland Photo Point – W13 added between time of baseline and MY1 survey, (November 18, 2018)